FiPhoPHA-A Fiber Photometry Python Package for Post Hoc Analysis.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-08-14 Print Date: 2025-08-01 DOI:10.1523/ENEURO.0221-25.2025
Vasilios Drakopoulos, Alex Reichenbach, Romana Stark, Claire J Foldi, Philip Jean-Richard-Dit-Bressel, Zane B Andrews
{"title":"FiPhoPHA-A Fiber Photometry Python Package for Post Hoc Analysis.","authors":"Vasilios Drakopoulos, Alex Reichenbach, Romana Stark, Claire J Foldi, Philip Jean-Richard-Dit-Bressel, Zane B Andrews","doi":"10.1523/ENEURO.0221-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Fiber photometry is a neuroscience technique that can continuously monitor in vivo fluorescence to assess population neural activity or neuropeptide/transmitter release in freely behaving animals. Despite the widespread adoption of this technique, methods to statistically analyze data in an unbiased, objective, and easily adopted manner are lacking. Various pipelines for data analysis exist, but they are often system specific, are only for preprocessing data, and/or lack usability. Current post hoc statistical approaches involve inadvertently biased user-defined time-binned averages or area under the curve analysis. To date, no post hoc user-friendly tool with few assumptions for a standardized unbiased analysis exists, yet such a tool would improve reproducibility and statistical reliability for all users. Hence, we have developed a user-friendly post hoc statistical analysis package in Python that is easily downloaded and applied to data from any fiber photometry system. This Fiber Photometry Post Hoc Analysis (FiPhoPHA) package incorporates a variety of tools, a downsampler, bootstrapped confidence intervals (CIs) for analyzing peri-event signals between groups and compared with baseline, and permutation tests for comparing peri-event signals across comparison periods. We also include the ability to quickly and efficiently sort the data into mean time bins, if desired. This provides an open-source, user-friendly Python package for unbiased and standardized post hoc statistical analysis to improve reproducibility using data from any fiber photometry system.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0221-25.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber photometry is a neuroscience technique that can continuously monitor in vivo fluorescence to assess population neural activity or neuropeptide/transmitter release in freely behaving animals. Despite the widespread adoption of this technique, methods to statistically analyze data in an unbiased, objective, and easily adopted manner are lacking. Various pipelines for data analysis exist, but they are often system specific, are only for preprocessing data, and/or lack usability. Current post hoc statistical approaches involve inadvertently biased user-defined time-binned averages or area under the curve analysis. To date, no post hoc user-friendly tool with few assumptions for a standardized unbiased analysis exists, yet such a tool would improve reproducibility and statistical reliability for all users. Hence, we have developed a user-friendly post hoc statistical analysis package in Python that is easily downloaded and applied to data from any fiber photometry system. This Fiber Photometry Post Hoc Analysis (FiPhoPHA) package incorporates a variety of tools, a downsampler, bootstrapped confidence intervals (CIs) for analyzing peri-event signals between groups and compared with baseline, and permutation tests for comparing peri-event signals across comparison periods. We also include the ability to quickly and efficiently sort the data into mean time bins, if desired. This provides an open-source, user-friendly Python package for unbiased and standardized post hoc statistical analysis to improve reproducibility using data from any fiber photometry system.

Abstract Image

Abstract Image

Abstract Image

FiPhoPHA -一个用于事后分析的纤维光度测定python包。
纤维光度法是一种神经科学技术,可以连续监测体内荧光,以评估自由行为动物的群体神经活动或神经肽/递质释放。尽管这种技术被广泛采用,但缺乏以公正、客观和易于采用的方式对数据进行统计分析的方法。存在各种数据分析管道,但它们通常是特定于系统的,仅用于预处理数据,并且/或者缺乏可用性。目前的事后统计方法涉及无意中有偏差的用户定义的时间盒平均值或曲线下面积分析。到目前为止,还没有对标准化的无偏分析进行少量假设的事后用户友好的工具,但这样的工具将提高所有用户的再现性和统计可靠性。因此,我们在Python中开发了一个用户友好的事后统计分析包,它可以很容易地下载并应用于任何纤维测光系统的数据。该光纤测光事后分析(FiPhoPHA)包包含各种工具,下采样器,用于分析组间和基线之间的事件前后信号的自举置信区间(ci),以及用于比较比较期间的事件前后信号的排列测试。如果需要,我们还包括快速有效地将数据分类到平均时间箱的能力。这提供了一个开源的,用户友好的python包,用于无偏和标准化的事后统计分析,以提高使用来自任何纤维光度测定系统的数据的再现性。尽管在神经科学研究中广泛采用体内光度法,但缺乏以公正、客观和易于采用的方式对数据进行统计分析的方法。存在各种数据分析管道,但它们通常是特定于系统的,仅用于预处理数据,并且/或者缺乏可用性。目前的事后统计方法涉及无意中有偏差的用户定义的时间盒平均值或曲线下面积分析。在这里,我们用Python开发了一个标准化的事后统计分析包,它可以很容易地下载并应用于任何光纤测光系统的数据。这提供了一个开源的,用户友好的python包,用于无偏和标准化的事后统计分析,以提高使用来自任何纤维光度测定系统的数据的再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信