{"title":"Microfluidics-Based Polymeric Micro/Nanocarriers for Drug Delivery in Liver Cancer Treatment: Recent Advances, Outlooks, and Progress.","authors":"Mahboobeh Ebrahimi Varkiani, Maryam Jadid Tavaf, Aliakbar Ebrahimiverkiani, Seyed Morteza Naghib","doi":"10.2174/0115680266375823250711100825","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics-based polymers are transforming drug delivery systems for liver cancer treatment as they enable precise synthesis of nano- and microparticles suitable for targeted therapy. The manufacture of programmable nanoparticles and tunable sizes is made possible by microfluidic platforms, which are essential for improving the effectiveness of medication administration. A wide range of therapeutic chemicals, including hydrophobic medications like doxorubicin, can be encapsulated in these systems to target liver cancers while reducing systemic toxicity effectively. It has also been demonstrated that combining natural hydrogels and droplet microfluidics can create multicellular tumor spheroids that resemble the tumor microenvironment more closely. This methodology improves screening and drug efficacy research and offers a strong foundation for assessing treatment outcomes. This research also explores novel uses of microfluidic technologies to develop intelligent drug delivery devices that respond to particular stimuli and release medication at the tumor site. It also investigated how artificial cell assemblies made with microfluidics can open new possibilities for individualized cancer treatment. To sum up, microfluidic-based polymers offer advanced tools for developing tailored and efficient drug delivery systems that can enhance patient outcomes, and represent a significant advancement in the treatment of liver cancer. The review paper discusses challenges in liver cancer treatment, including high drug clearance rates, low concentrations, and multidrug resistance. It suggests microfluidic technology can improve drug delivery systems by creating controlled particles and responding to tumor conditions. This could revolutionize liver cancer therapies, enabling better drug testing and treatment prediction, as well as designing tailored therapies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266375823250711100825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics-based polymers are transforming drug delivery systems for liver cancer treatment as they enable precise synthesis of nano- and microparticles suitable for targeted therapy. The manufacture of programmable nanoparticles and tunable sizes is made possible by microfluidic platforms, which are essential for improving the effectiveness of medication administration. A wide range of therapeutic chemicals, including hydrophobic medications like doxorubicin, can be encapsulated in these systems to target liver cancers while reducing systemic toxicity effectively. It has also been demonstrated that combining natural hydrogels and droplet microfluidics can create multicellular tumor spheroids that resemble the tumor microenvironment more closely. This methodology improves screening and drug efficacy research and offers a strong foundation for assessing treatment outcomes. This research also explores novel uses of microfluidic technologies to develop intelligent drug delivery devices that respond to particular stimuli and release medication at the tumor site. It also investigated how artificial cell assemblies made with microfluidics can open new possibilities for individualized cancer treatment. To sum up, microfluidic-based polymers offer advanced tools for developing tailored and efficient drug delivery systems that can enhance patient outcomes, and represent a significant advancement in the treatment of liver cancer. The review paper discusses challenges in liver cancer treatment, including high drug clearance rates, low concentrations, and multidrug resistance. It suggests microfluidic technology can improve drug delivery systems by creating controlled particles and responding to tumor conditions. This could revolutionize liver cancer therapies, enabling better drug testing and treatment prediction, as well as designing tailored therapies.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.