{"title":"Enhancing InceptionResNet to Diagnose COVID-19 from Medical Images.","authors":"Shadi Aljawarneh, Indrakshi Ray","doi":"10.2174/0109298673378155250704110629","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This investigation delves into the diagnosis of COVID-19, using X-ray images generated by way of an effective deep learning model. In terms of assessing the COVID-19 diagnosis learning model, the methods currently employed tend to focus on the accuracy rate level, while neglecting several significant assessment parameters. These parameters, which include precision, sensitivity and specificity, significantly, F1-score, and ROC-AUC influence the performance level of the model. In this paper, we have improved the InceptionResNet and called Enhanced InceptionResNet with restructured parameters termed, \"Enhanced InceptionResNet,\" which incorporates depth-wise separable convolutions to enhance the efficiency of feature extraction and minimize the consumption of computational resources.</p><p><strong>Methods: </strong>For this investigation, three residual network (ResNet) models, namely Res- Net, InceptionResNet model, and the Enhanced InceptionResNet with restructured parameters, were employed for a medical image classification assignment. The performance of each model was evaluated on a balanced dataset of 2600 X-ray images. The models were subsequently assessed for accuracy and loss, as well subjected to a confusion matrix analysis.</p><p><strong>Results: </strong>The Enhanced InceptionResNet consistently outperformed ResNet and InceptionResNet in terms of validation and testing accuracy, recall, precision, F1-score, and ROC-AUC demonstrating its superior capacity for identifying pertinent information in the data. In the context of validation and testing accuracy, our Enhanced InceptionRes- Net repeatedly proved to be more reliable than ResNet, an indication of the former's capacity for the efficient identification of pertinent information in the data (99.0% and 98.35%, respectively), suggesting enhanced feature extraction capabilities.</p><p><strong>Conclusion: </strong>The Enhanced InceptionResNet excelled in COVID-19 diagnosis from chest X-rays, surpassing ResNet and Default InceptionResNet in accuracy, precision, and sensitivity. Despite computational demands, it shows promise for medical image classification. Future work should leverage larger datasets, cloud platforms, and hyperparameter optimisation to improve performance, especially for distinguishing normal and pneumonia cases.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673378155250704110629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This investigation delves into the diagnosis of COVID-19, using X-ray images generated by way of an effective deep learning model. In terms of assessing the COVID-19 diagnosis learning model, the methods currently employed tend to focus on the accuracy rate level, while neglecting several significant assessment parameters. These parameters, which include precision, sensitivity and specificity, significantly, F1-score, and ROC-AUC influence the performance level of the model. In this paper, we have improved the InceptionResNet and called Enhanced InceptionResNet with restructured parameters termed, "Enhanced InceptionResNet," which incorporates depth-wise separable convolutions to enhance the efficiency of feature extraction and minimize the consumption of computational resources.
Methods: For this investigation, three residual network (ResNet) models, namely Res- Net, InceptionResNet model, and the Enhanced InceptionResNet with restructured parameters, were employed for a medical image classification assignment. The performance of each model was evaluated on a balanced dataset of 2600 X-ray images. The models were subsequently assessed for accuracy and loss, as well subjected to a confusion matrix analysis.
Results: The Enhanced InceptionResNet consistently outperformed ResNet and InceptionResNet in terms of validation and testing accuracy, recall, precision, F1-score, and ROC-AUC demonstrating its superior capacity for identifying pertinent information in the data. In the context of validation and testing accuracy, our Enhanced InceptionRes- Net repeatedly proved to be more reliable than ResNet, an indication of the former's capacity for the efficient identification of pertinent information in the data (99.0% and 98.35%, respectively), suggesting enhanced feature extraction capabilities.
Conclusion: The Enhanced InceptionResNet excelled in COVID-19 diagnosis from chest X-rays, surpassing ResNet and Default InceptionResNet in accuracy, precision, and sensitivity. Despite computational demands, it shows promise for medical image classification. Future work should leverage larger datasets, cloud platforms, and hyperparameter optimisation to improve performance, especially for distinguishing normal and pneumonia cases.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.