Weijun Guo, Liang Le, Daolei Zhang, Ziwei Wei, Yifan Wang, Yue Wu, Hada Wuriyanghan, Xiaofeng Gu, Li Pu
{"title":"Heat stress responses mediated by N6-methyladenine DNA methylation in maize.","authors":"Weijun Guo, Liang Le, Daolei Zhang, Ziwei Wei, Yifan Wang, Yue Wu, Hada Wuriyanghan, Xiaofeng Gu, Li Pu","doi":"10.1016/j.celrep.2025.116058","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenine (6mA) plays an important role in eukaryotic development and stress responses, yet its function under heat stress (HS) in crops remains unclear. Here, we show that 6mA dynamics in two maize inbred lines, B73 and Mo17, correlate with their responses to HS. Genome-wide 6mA profiling reveals enrichment in promoters, intergenic regions, and transposable elements (TEs), with inverse correlation with gene/TE expression. Upon HS, heat-tolerant plants show elevated 6mA levels, with differential 6mA patterning on key HS-related genes underlying thermotolerance variation between B73 and Mo17. We identified ZmALKBH1 as a 6mA demethylase, and its mutation enhances HS tolerance. A deep learning model based on 6mA methylomes of B73 and Mo17 accurately predicts and experimentally validates 6mA distribution and HS response in additional W22 and B104 lines. These findings uncover the role of 6mA in transcriptional regulation of crop stress adaptation and offer potential targets for improving thermotolerance in maize.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 8","pages":"116058"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.116058","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenine (6mA) plays an important role in eukaryotic development and stress responses, yet its function under heat stress (HS) in crops remains unclear. Here, we show that 6mA dynamics in two maize inbred lines, B73 and Mo17, correlate with their responses to HS. Genome-wide 6mA profiling reveals enrichment in promoters, intergenic regions, and transposable elements (TEs), with inverse correlation with gene/TE expression. Upon HS, heat-tolerant plants show elevated 6mA levels, with differential 6mA patterning on key HS-related genes underlying thermotolerance variation between B73 and Mo17. We identified ZmALKBH1 as a 6mA demethylase, and its mutation enhances HS tolerance. A deep learning model based on 6mA methylomes of B73 and Mo17 accurately predicts and experimentally validates 6mA distribution and HS response in additional W22 and B104 lines. These findings uncover the role of 6mA in transcriptional regulation of crop stress adaptation and offer potential targets for improving thermotolerance in maize.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.