Analysis of Partial Discharge Characteristics and Dielectric Strength in Multilayer Insulation Systems for MVDC Cables in Future All-Electric Wide-Body Aircraft

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Anoy Saha;Saikat Chowdhury;Md Asifur Rahman;Mona Ghassemi
{"title":"Analysis of Partial Discharge Characteristics and Dielectric Strength in Multilayer Insulation Systems for MVDC Cables in Future All-Electric Wide-Body Aircraft","authors":"Anoy Saha;Saikat Chowdhury;Md Asifur Rahman;Mona Ghassemi","doi":"10.1109/TDEI.2025.3557779","DOIUrl":null,"url":null,"abstract":"The design of lightweight, high-power medium-voltage direct current (MVdc) cables is crucial for future all-electric aircraft (AEA) to ensure reliable performance and durability under harsh environmental conditions. These cables must effectively mitigate partial discharge (PD) and insulation degradation to support the high-power demands of next-generation aviation. In our previous work, we developed multilayer multifunctional electrical insulation (MMEI) systems to tackle these challenges. This article presents the detailed experimental studies conducted on these MMEI structures, both as flat samples and cable prototypes. Among all the designed MMEI structures, previously designed ARC-SC-T-MMEI was selected for PD study due to its multifunctionality. First, the flat sample for the selected MMEI design is fabricated, and the fabrication process is optimized by analyzing the PD characteristics observed under different fabrication conditions. Building upon these findings, a cable prototype is created using the optimized MMEI samples. Subsequently, the PD behavior of the optimized fabricated samples is investigated under varying pressure levels to replicate the actual conditions encountered in an aircraft environment. The PD behavior of this cable prototype is rigorously studied and analyzed using the Pearson correlation coefficient to assess its performance and reliability in operational conditions. Furthermore, the dielectric strength of these samples is examined under dc voltage. A two-parameter Weibull distribution is used to analyze the effect of pressure on the breakdown of the fabricated samples. This article provides detailed insights into the fabrication and performance analysis of MMEI systems under dc voltage at atmospheric and low pressures.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"2284-2293"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949635/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The design of lightweight, high-power medium-voltage direct current (MVdc) cables is crucial for future all-electric aircraft (AEA) to ensure reliable performance and durability under harsh environmental conditions. These cables must effectively mitigate partial discharge (PD) and insulation degradation to support the high-power demands of next-generation aviation. In our previous work, we developed multilayer multifunctional electrical insulation (MMEI) systems to tackle these challenges. This article presents the detailed experimental studies conducted on these MMEI structures, both as flat samples and cable prototypes. Among all the designed MMEI structures, previously designed ARC-SC-T-MMEI was selected for PD study due to its multifunctionality. First, the flat sample for the selected MMEI design is fabricated, and the fabrication process is optimized by analyzing the PD characteristics observed under different fabrication conditions. Building upon these findings, a cable prototype is created using the optimized MMEI samples. Subsequently, the PD behavior of the optimized fabricated samples is investigated under varying pressure levels to replicate the actual conditions encountered in an aircraft environment. The PD behavior of this cable prototype is rigorously studied and analyzed using the Pearson correlation coefficient to assess its performance and reliability in operational conditions. Furthermore, the dielectric strength of these samples is examined under dc voltage. A two-parameter Weibull distribution is used to analyze the effect of pressure on the breakdown of the fabricated samples. This article provides detailed insights into the fabrication and performance analysis of MMEI systems under dc voltage at atmospheric and low pressures.
未来全电动宽体飞机MVDC电缆多层绝缘系统局部放电特性及介电强度分析
轻质、大功率中压直流(MVdc)电缆的设计对于未来的全电动飞机(AEA)至关重要,以确保在恶劣环境条件下的可靠性能和耐久性。这些电缆必须有效地减轻局部放电(PD)和绝缘退化,以支持下一代航空的高功率需求。在我们之前的工作中,我们开发了多层多功能电绝缘(MMEI)系统来解决这些挑战。本文介绍了对这些MMEI结构进行的详细实验研究,包括平面样品和电缆原型。在所有已设计的MMEI结构中,由于其多功能,我们选择了先前设计的ARC-SC-T-MMEI进行PD研究。首先,制作了所选MMEI设计的平面样品,并通过分析不同制作条件下观察到的PD特性来优化制作工艺。在这些发现的基础上,使用优化的MMEI样本创建了电缆原型。随后,研究了优化后的制备样品在不同压力水平下的PD行为,以复制飞机环境中遇到的实际条件。使用Pearson相关系数对该电缆原型的PD行为进行了严格的研究和分析,以评估其在运行条件下的性能和可靠性。此外,还测试了样品在直流电压下的介电强度。采用双参数威布尔分布分析了压力对试样击穿的影响。本文详细介绍了MMEI系统在常压和低压直流电压下的制造和性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信