{"title":"XLPE Electric Field Reversal Caused by Temperature Rise of Oil-Filled DC Cable Terminal","authors":"Changyun Li;Jun Shao;Fengtian Sun;Yongjin Yu","doi":"10.1109/TDEI.2025.3585848","DOIUrl":null,"url":null,"abstract":"With the global energy structure evolving, high-capacity, long-distance power transmission will increasingly employ dc systems. Accurate modeling and analysis of the dc cable terminal (CT)—a power device with insulating dielectrics in solid, liquid, and gas states—are crucial for preventing fault formation. Based on the thermal-assisted/variable-range hopping conductance model of cross-linked polyethylene (XLPE), this study identifies the electric field reversal phenomenon in the radial section of XLPE under various conditions. By using different position parameters and operating parameters as independent variables for electric field intensity fitting, we enhance the efficiency of accurately obtaining the internal electric field intensity during the dc CT operation. The analytical results show that the internal electric field is most uniform when an appropriate load is applied to the conductor, representing the healthiest operating mode for the dc CT. This study provides a reference for determining the internal insulation state of the CT under different operating conditions, enabling early detection of potential issues and the adoption of corresponding countermeasures.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"2366-2374"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11071298/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the global energy structure evolving, high-capacity, long-distance power transmission will increasingly employ dc systems. Accurate modeling and analysis of the dc cable terminal (CT)—a power device with insulating dielectrics in solid, liquid, and gas states—are crucial for preventing fault formation. Based on the thermal-assisted/variable-range hopping conductance model of cross-linked polyethylene (XLPE), this study identifies the electric field reversal phenomenon in the radial section of XLPE under various conditions. By using different position parameters and operating parameters as independent variables for electric field intensity fitting, we enhance the efficiency of accurately obtaining the internal electric field intensity during the dc CT operation. The analytical results show that the internal electric field is most uniform when an appropriate load is applied to the conductor, representing the healthiest operating mode for the dc CT. This study provides a reference for determining the internal insulation state of the CT under different operating conditions, enabling early detection of potential issues and the adoption of corresponding countermeasures.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.