Liouville-type theorems for the stationary ideal compressible MHD equations

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Youseung Cho , Hyunjin In , Minsuk Yang
{"title":"Liouville-type theorems for the stationary ideal compressible MHD equations","authors":"Youseung Cho ,&nbsp;Hyunjin In ,&nbsp;Minsuk Yang","doi":"10.1016/j.aml.2025.109694","DOIUrl":null,"url":null,"abstract":"<div><div>We study Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics (MHD) equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. In particular, we improve the theorems of Cai et al. (2024) (specifically Theorems 1.1 and 1.2). We remove symmetry assumptions such as axial symmetry without swirl and establish Liouville-type theorems under significantly weaker integrability conditions. We derive mean value identities and corresponding monotonicity properties to prove that smooth solutions satisfying a vanishing energy-type condition at infinity must be trivial. The results extend to lower-dimensional reduced models derived from the MHD system.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109694"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics (MHD) equations in Rn for n1. In particular, we improve the theorems of Cai et al. (2024) (specifically Theorems 1.1 and 1.2). We remove symmetry assumptions such as axial symmetry without swirl and establish Liouville-type theorems under significantly weaker integrability conditions. We derive mean value identities and corresponding monotonicity properties to prove that smooth solutions satisfying a vanishing energy-type condition at infinity must be trivial. The results extend to lower-dimensional reduced models derived from the MHD system.
定态理想可压缩MHD方程的liouville型定理
研究了Rn中n≥1的稳态理想可压缩磁流体动力学方程的liouville型定理。特别地,我们改进了Cai等人(2024)的定理(特别是定理1.1和1.2)。我们去掉了诸如无旋流轴对称等对称假设,并在明显较弱的可积条件下建立了liouville型定理。我们导出了均值恒等式和相应的单调性,证明了满足无穷远处能量型消失条件的光滑解一定是平凡的。结果扩展到从MHD系统导出的低维简化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信