Second-phase composite engineering endows Gd3TaO7-based ceramic with broadband infrared radiation

Enyu Xie , Shuqi Wang , Guoliang Chen , Yongchun Zou , Jianghong Zhang , Yaming Wang , Qingyuan Zhao , Zijian Peng , Junteng Yao , Jiahu Ouyang , Dechang Jia , Yu Zhou , Valentina L. Stolyarova
{"title":"Second-phase composite engineering endows Gd3TaO7-based ceramic with broadband infrared radiation","authors":"Enyu Xie ,&nbsp;Shuqi Wang ,&nbsp;Guoliang Chen ,&nbsp;Yongchun Zou ,&nbsp;Jianghong Zhang ,&nbsp;Yaming Wang ,&nbsp;Qingyuan Zhao ,&nbsp;Zijian Peng ,&nbsp;Junteng Yao ,&nbsp;Jiahu Ouyang ,&nbsp;Dechang Jia ,&nbsp;Yu Zhou ,&nbsp;Valentina L. Stolyarova","doi":"10.1016/j.apmate.2025.100318","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature infrared (IR) radiation materials with broadband high emissivity, low thermal conductivity, and high fracture toughness are urgently needed for radiative heat management. Here, we report a Gd<sub>3</sub>TaO<sub>7</sub>/GdFeO<sub>3</sub> composite ceramic that integrates a broadband (0.78–14 ​μm) high emissivity (close to 0.9), low thermal conductivity (1.62 ​W ​m<sup>−1</sup> ​K<sup>−1</sup>), and fracture toughness (2.3 ​MPa ​m<sup>1/2</sup>, close to YSZ). Through the introduction of second-phase GdFeO<sub>3</sub>, many lattice distortions, multimode vibrations, and additional oxygen vacancies (O<sub>v</sub>) contribute to an increase in the broad-band emissivity of the composite ceramics (especially in the 2.5–6 ​μm band, nearly 5 times greater than that of Gd<sub>3</sub>TaO<sub>7</sub>). This high IR emissivity significantly suppresses the elevated photonic thermal conductivity at high temperatures, resulting in ultralow thermal conductivity. Moreover, the stable atomic arrangement within the two phases contributed to the impressive high-temperature stability (1773 ​K, 200 ​h). The improved fracture toughness is attributed primarily to the presence of the second phase promoting crack tip deflection, bridging and branching, which prevent crack expansion. All the advantages render this second-phase composite strategy fully competitive in the development of a new generation of superhigh-temperature radiative heat management materials.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 5","pages":"Article 100318"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature infrared (IR) radiation materials with broadband high emissivity, low thermal conductivity, and high fracture toughness are urgently needed for radiative heat management. Here, we report a Gd3TaO7/GdFeO3 composite ceramic that integrates a broadband (0.78–14 ​μm) high emissivity (close to 0.9), low thermal conductivity (1.62 ​W ​m−1 ​K−1), and fracture toughness (2.3 ​MPa ​m1/2, close to YSZ). Through the introduction of second-phase GdFeO3, many lattice distortions, multimode vibrations, and additional oxygen vacancies (Ov) contribute to an increase in the broad-band emissivity of the composite ceramics (especially in the 2.5–6 ​μm band, nearly 5 times greater than that of Gd3TaO7). This high IR emissivity significantly suppresses the elevated photonic thermal conductivity at high temperatures, resulting in ultralow thermal conductivity. Moreover, the stable atomic arrangement within the two phases contributed to the impressive high-temperature stability (1773 ​K, 200 ​h). The improved fracture toughness is attributed primarily to the presence of the second phase promoting crack tip deflection, bridging and branching, which prevent crack expansion. All the advantages render this second-phase composite strategy fully competitive in the development of a new generation of superhigh-temperature radiative heat management materials.

Abstract Image

二期复合工程使gd3tao7基陶瓷具有宽带红外辐射
具有宽带高发射率、低导热系数和高断裂韧性的高温红外辐射材料是辐射热管理的迫切需要。在这里,我们报道了一种Gd3TaO7/GdFeO3复合陶瓷,它集成了宽带(0.78-14 μm)高发射率(接近0.9),低导热系数(1.62 W m−1 K−1)和断裂韧性(2.3 MPa m1/2,接近YSZ)。通过引入第二相GdFeO3,许多晶格畸变、多模振动和额外的氧空位(Ov)有助于提高复合陶瓷的宽带发射率(特别是在2.5-6 μm波段,几乎是Gd3TaO7的5倍)。这种高红外发射率显著抑制了高温下光子热导率的升高,导致超低热导率。此外,两相内稳定的原子排列有助于令人印象深刻的高温稳定性(1773 K, 200 h)。断裂韧性的提高主要是由于第二相的存在促进了裂纹尖端的挠曲、桥接和分支,从而阻止了裂纹的扩展。所有这些优点使这种第二阶段复合材料在新一代超高温辐射热管理材料的开发中具有充分的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信