Non-intrusive model reduction of advection-dominated hyperbolic problems using neural network shift augmented manifold transformation

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Harshith Gowrachari , Nicola Demo , Giovanni Stabile , Gianluigi Rozza
{"title":"Non-intrusive model reduction of advection-dominated hyperbolic problems using neural network shift augmented manifold transformation","authors":"Harshith Gowrachari ,&nbsp;Nicola Demo ,&nbsp;Giovanni Stabile ,&nbsp;Gianluigi Rozza","doi":"10.1016/j.compfluid.2025.106758","DOIUrl":null,"url":null,"abstract":"<div><div>Advection-dominated problems are predominantly noticed in nature, engineering systems, and various industrial processes. Traditional linear compression methods, such as proper orthogonal decomposition (POD) and reduced basis (RB) methods are ill-suited for these problems, due to slow Kolmogorov <em>n</em>-width decay. This results in inefficient and inaccurate reduced order models (ROMs). There are few non-linear approaches to accelerate the Kolmogorov <em>n</em>-width decay. In this work, we use a neural network shift augmented transformation technique that employs automatic shift detection. This approach leverages a deep-learning framework to derive a parameter-dependent mapping between the original manifold <span><math><mi>M</mi></math></span> and the transformed manifold <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. We apply a linear compression method to obtain a low-dimensional linear approximation subspace of the transformed manifold <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. Furthermore, we construct non-intrusive reduced order models on the resulting transformed linear approximation subspace and employ automatic shift detection for predictions in the online stage. We propose a complete framework, the neural network shift-augmented proper orthogonal decomposition-based reduced order model (NNsPOD-ROM) algorithm, comprising both offline and online stages for model reduction of advection-dominated problems. We test our proposed methodology on numerous experiments to evaluate its performance on the 1D linear advection equation, a higher order method benchmark case - the 2D isentropic convective vortex, and 2D two-phase flow.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"300 ","pages":"Article 106758"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302500218X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Advection-dominated problems are predominantly noticed in nature, engineering systems, and various industrial processes. Traditional linear compression methods, such as proper orthogonal decomposition (POD) and reduced basis (RB) methods are ill-suited for these problems, due to slow Kolmogorov n-width decay. This results in inefficient and inaccurate reduced order models (ROMs). There are few non-linear approaches to accelerate the Kolmogorov n-width decay. In this work, we use a neural network shift augmented transformation technique that employs automatic shift detection. This approach leverages a deep-learning framework to derive a parameter-dependent mapping between the original manifold M and the transformed manifold M̃. We apply a linear compression method to obtain a low-dimensional linear approximation subspace of the transformed manifold M̃. Furthermore, we construct non-intrusive reduced order models on the resulting transformed linear approximation subspace and employ automatic shift detection for predictions in the online stage. We propose a complete framework, the neural network shift-augmented proper orthogonal decomposition-based reduced order model (NNsPOD-ROM) algorithm, comprising both offline and online stages for model reduction of advection-dominated problems. We test our proposed methodology on numerous experiments to evaluate its performance on the 1D linear advection equation, a higher order method benchmark case - the 2D isentropic convective vortex, and 2D two-phase flow.
利用神经网络移位增广流形变换对平流控制的双曲型问题进行非侵入式模型约简
平流主导的问题在自然界、工程系统和各种工业过程中都很明显。传统的线性压缩方法,如适当正交分解(POD)和约简基(RB)方法,由于其n-宽度衰减缓慢而不适用于这些问题。这导致了效率低下和不准确的降阶模型(ROMs)。很少有非线性方法来加速柯尔莫哥洛夫n-宽度衰减。在这项工作中,我们使用了一种神经网络位移增强变换技术,该技术采用自动位移检测。该方法利用深度学习框架来推导原始流形M和转换后的流形M之间的参数相关映射。我们应用线性压缩方法得到变换后的流形M的低维线性逼近子空间。此外,我们在变换后的线性逼近子空间上构造非侵入性降阶模型,并在在线阶段使用自动移位检测进行预测。我们提出了一个完整的框架,即基于神经网络移位增强的适当正交分解的降阶模型(nnsporom)算法,该算法包括离线和在线两个阶段,用于平流主导问题的模型约简。我们通过大量实验来测试我们提出的方法,以评估其在一维线性平流方程,高阶方法基准案例-二维等熵对流涡和二维两相流中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信