Optuna-LightGBM : An Optuna hyperparameter optimization framework for the determination of solvent components in acid gas removal unit using LightGBM

IF 6.5 Q2 ENGINEERING, ENVIRONMENTAL
Rafi Jusar Wishnuwardana , Madiah Binti Omar , Haslinda Binti Zabiri , Mochammad Faqih , Kishore Bingi , Rosdiazli Ibrahim
{"title":"Optuna-LightGBM : An Optuna hyperparameter optimization framework for the determination of solvent components in acid gas removal unit using LightGBM","authors":"Rafi Jusar Wishnuwardana ,&nbsp;Madiah Binti Omar ,&nbsp;Haslinda Binti Zabiri ,&nbsp;Mochammad Faqih ,&nbsp;Kishore Bingi ,&nbsp;Rosdiazli Ibrahim","doi":"10.1016/j.clet.2025.101054","DOIUrl":null,"url":null,"abstract":"<div><div>Acid gas removal unit (AGRU) serves as an essential process in gas treatment, specifically designed to eliminate acid gases like hydrogen sulfide (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S) and carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) from natural gas. Absorption-based AGRU are extensively employing chemical solvents because of their strong performance and effectiveness. Nonetheless, using various solvents with unique properties significantly affects AGRU performance. The determination of this solvent component primarily relies on experimental or simulation-based trial and error, with minimal research dedicated to classification methods aimed at identifying the optimal solvent under specific conditions. In addressing the research problem, this study systematically evaluated several supervised machine learning models, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Decision Tree, and Artificial Neural Network (ANN), to identify the optimal solvent component from a selection of six different solvents used in AGRU. Data were gathered from the verified flowsheet utilizing the Aspen HYSYS software. The results indicate that LightGBM algorithms surpass the performances of all algorithms, with accuracy (98.4%) and training time (0.7 s). Hyperparameter optimization using Optuna was employed to increase the performance of the LightGBM model, with an increment of 0.4% and a training time reduction of over 50%. Additionally, hyperparameter importance and sensitivity analysis confirmed that the number of boosting rounds and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> composition are the key parameters affecting the Optuna-LightGBM model in predicting solvent components. These findings offer valuable perspectives for enhancing solvent components to boost AGRU efficiency in industrial settings.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"28 ","pages":"Article 101054"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acid gas removal unit (AGRU) serves as an essential process in gas treatment, specifically designed to eliminate acid gases like hydrogen sulfide (H2S) and carbon dioxide (CO2) from natural gas. Absorption-based AGRU are extensively employing chemical solvents because of their strong performance and effectiveness. Nonetheless, using various solvents with unique properties significantly affects AGRU performance. The determination of this solvent component primarily relies on experimental or simulation-based trial and error, with minimal research dedicated to classification methods aimed at identifying the optimal solvent under specific conditions. In addressing the research problem, this study systematically evaluated several supervised machine learning models, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Decision Tree, and Artificial Neural Network (ANN), to identify the optimal solvent component from a selection of six different solvents used in AGRU. Data were gathered from the verified flowsheet utilizing the Aspen HYSYS software. The results indicate that LightGBM algorithms surpass the performances of all algorithms, with accuracy (98.4%) and training time (0.7 s). Hyperparameter optimization using Optuna was employed to increase the performance of the LightGBM model, with an increment of 0.4% and a training time reduction of over 50%. Additionally, hyperparameter importance and sensitivity analysis confirmed that the number of boosting rounds and CO2 composition are the key parameters affecting the Optuna-LightGBM model in predicting solvent components. These findings offer valuable perspectives for enhancing solvent components to boost AGRU efficiency in industrial settings.
Optuna-LightGBM:一个Optuna超参数优化框架,用于使用LightGBM测定酸性气体去除装置中的溶剂成分
酸性气体去除装置(agu)是气体处理中必不可少的工艺,专门用于去除天然气中的硫化氢(H2S)和二氧化碳(CO2)等酸性气体。基于吸收的agu由于其强大的性能和有效性而广泛使用化学溶剂。然而,使用各种具有独特性能的溶剂会显著影响agu的性能。这种溶剂成分的测定主要依赖于实验或基于模拟的试错,很少有专门用于在特定条件下确定最佳溶剂的分类方法的研究。为了解决研究问题,本研究系统地评估了几种有监督的机器学习模型,包括光梯度增强机(LightGBM)、极限梯度增强机(XGBoost)、支持向量机(SVM)、决策树和人工神经网络(ANN),以从agu中使用的六种不同溶剂中选择最佳溶剂成分。利用Aspen HYSYS软件从验证的流程中收集数据。结果表明,LightGBM算法的准确率为98.4%,训练时间为0.7 s,优于所有算法。使用Optuna进行超参数优化,提高了LightGBM模型的性能,提高了0.4%,训练时间减少了50%以上。此外,超参数重要性和敏感性分析证实,助推次数和CO2组成是影响Optuna-LightGBM模型预测溶剂组分的关键参数。这些发现为在工业环境中增强溶剂成分以提高agu效率提供了有价值的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信