Strong c-concavity and stability in optimal transport

IF 2.3 1区 数学 Q1 MATHEMATICS
Anatole Gallouët , Quentin Mérigot , Boris Thibert
{"title":"Strong c-concavity and stability in optimal transport","authors":"Anatole Gallouët ,&nbsp;Quentin Mérigot ,&nbsp;Boris Thibert","doi":"10.1016/j.matpur.2025.103773","DOIUrl":null,"url":null,"abstract":"<div><div>The stability of solutions to optimal transport problems under variation of the measures is fundamental from a mathematical viewpoint: it is closely related to the convergence of numerical approaches to solve optimal transport problems and justifies many of the applications of optimal transport. In this article, we introduce the notion of strong <em>c</em>-concavity, and we show that it plays an important role for proving stability results in optimal transport for general cost functions <em>c</em>. We then introduce a differential criterion for proving that a function is strongly <em>c</em>-concave, under an hypothesis on the cost introduced originally by Ma-Trudinger-Wang for establishing regularity of optimal transport maps. Finally, we provide two examples where this stability result can be applied, for cost functions taking value +∞ on the sphere: the reflector problem and the Gaussian curvature measure prescription problem.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103773"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001175","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of solutions to optimal transport problems under variation of the measures is fundamental from a mathematical viewpoint: it is closely related to the convergence of numerical approaches to solve optimal transport problems and justifies many of the applications of optimal transport. In this article, we introduce the notion of strong c-concavity, and we show that it plays an important role for proving stability results in optimal transport for general cost functions c. We then introduce a differential criterion for proving that a function is strongly c-concave, under an hypothesis on the cost introduced originally by Ma-Trudinger-Wang for establishing regularity of optimal transport maps. Finally, we provide two examples where this stability result can be applied, for cost functions taking value +∞ on the sphere: the reflector problem and the Gaussian curvature measure prescription problem.
强c-凹凸性和最优输运的稳定性
从数学的角度来看,最优运输问题在措施变化下解的稳定性是基本的:它与解决最优运输问题的数值方法的收敛性密切相关,并证明了最优运输的许多应用。在本文中,我们引入了强c-凹的概念,并证明了它在证明一般代价函数c的最优传输的稳定性结果中起着重要的作用。然后,我们引入了一个微分准则来证明一个函数是强c-凹的,在Ma-Trudinger-Wang最初为建立最优传输映射的正则性而引入的代价假设下。最后,我们提供了两个可以应用此稳定性结果的例子,对于球面上取值为+∞的代价函数:反射器问题和高斯曲率测量处方问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信