{"title":"Non-uniqueness of parabolic solutions for advection-diffusion equation","authors":"Thérèse Moerschell , Massimo Sorella","doi":"10.1016/j.matpur.2025.103777","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel example of a divergence–free velocity field <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>p</mi><mo><</mo><mn>2</mn></math></span> arbitrary but fixed which leads to non-unique solutions of advection–diffusion in the class <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> while satisfying the local energy inequality. This result complements the known uniqueness result of bounded solutions for divergence-free and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> integrable velocity fields. Additionally, we also prove the necessity of time integrability of the velocity field for the uniqueness result. More precisely, we construct another divergence–free velocity field <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span>, for <span><math><mi>p</mi><mo><</mo><mn>2</mn></math></span> fixed, but arbitrary, with non–unique aforementioned solutions. Our contribution closes the gap between the regime of uniqueness and non-uniqueness in this context. Previously, it was shown with the convex integration technique that for <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> divergence–free velocity fields <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>p</mi><mo><</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span> could lead to non–unique solutions in the space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>. Our proof is based on a stochastic Lagrangian approach and does not rely on convex integration.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103777"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001217","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel example of a divergence–free velocity field for arbitrary but fixed which leads to non-unique solutions of advection–diffusion in the class while satisfying the local energy inequality. This result complements the known uniqueness result of bounded solutions for divergence-free and integrable velocity fields. Additionally, we also prove the necessity of time integrability of the velocity field for the uniqueness result. More precisely, we construct another divergence–free velocity field , for fixed, but arbitrary, with non–unique aforementioned solutions. Our contribution closes the gap between the regime of uniqueness and non-uniqueness in this context. Previously, it was shown with the convex integration technique that for divergence–free velocity fields with could lead to non–unique solutions in the space . Our proof is based on a stochastic Lagrangian approach and does not rely on convex integration.
我们给出了一个新的无散度速度场b∈L∞((0,1);Lp(T2))对于p<;2的任意但固定的例子,它导致了在满足局部能量不等式的Lt,x∞∩Lt2Hx1类中的平流扩散的非唯一解。该结果补充了无散度和lx2可积速度场有界解的已知唯一性结果。此外,为了得到唯一性结果,我们还证明了速度场时间可积性的必要性。更准确地说,我们构造了另一个无散度速度场b∈Lp((0,1);L∞(T2)),对于p<;2是固定的,但是任意的,具有上述非唯一解。在这方面,我们的贡献缩小了独特性和非独特性制度之间的差距。先前,用凸积分技术证明了对于d≥3个无散度速度场b∈L∞((0,1);Lp(Td)) with p<;2dd+2可以导致空间Lt∞Lx2dd−2∩Lt2Hx1的非唯一解。我们的证明是基于随机拉格朗日方法,而不依赖于凸积分。
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.