Interpretability in machine learning for IAQ and HVAC optimisation: A response to Oka et al

IF 7.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Seyed Hamed Godasiaei , Obuks A. Ejohwomu , Hua Zhong , Douglas Booker
{"title":"Interpretability in machine learning for IAQ and HVAC optimisation: A response to Oka et al","authors":"Seyed Hamed Godasiaei ,&nbsp;Obuks A. Ejohwomu ,&nbsp;Hua Zhong ,&nbsp;Douglas Booker","doi":"10.1016/j.buildenv.2025.113494","DOIUrl":null,"url":null,"abstract":"<div><div>Godasiaei <em>et al</em>. employed advanced deep learning models, including– GRUs, RNNs, LSTMs, and CN – to capture temporal and spatial patterns in air pollution data. The reported methodology addresses four critical challenges: (1) Model Architecture Optimization through systematic weight/bias adjustment, hyperparameter tuning, and hidden layer configuration; (2) Bias Mitigation using G-DeepSHAP and CNN-assisted visualization; (3) Rigorous Validation via k-fold cross-validation and sensitivity analysis; and (4) Practical Implementation bridging theoretical constructs with real-world indoor air quality (IAQ) management. By combining machine learning with sensitivity analysis – supported by empirical validation and systematic model refinement – this research overcomes key limitations of traditional air pollution analysis methods.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"284 ","pages":"Article 113494"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132325009679","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Godasiaei et al. employed advanced deep learning models, including– GRUs, RNNs, LSTMs, and CN – to capture temporal and spatial patterns in air pollution data. The reported methodology addresses four critical challenges: (1) Model Architecture Optimization through systematic weight/bias adjustment, hyperparameter tuning, and hidden layer configuration; (2) Bias Mitigation using G-DeepSHAP and CNN-assisted visualization; (3) Rigorous Validation via k-fold cross-validation and sensitivity analysis; and (4) Practical Implementation bridging theoretical constructs with real-world indoor air quality (IAQ) management. By combining machine learning with sensitivity analysis – supported by empirical validation and systematic model refinement – this research overcomes key limitations of traditional air pollution analysis methods.
机器学习对室内空气质量和暖通空调优化的可解释性:对Oka等人的回应
Godasiaei等人采用先进的深度学习模型(包括- gru、rnn、lstm和CN)来捕捉空气污染数据中的时空模式。报告的方法解决了四个关键挑战:(1)通过系统的权重/偏差调整、超参数调整和隐藏层配置来优化模型架构;(2)基于G-DeepSHAP和cnn辅助可视化的偏差缓解;(3)通过k-fold交叉验证和灵敏度分析进行严格验证;(4)将理论构建与实际室内空气质量(IAQ)管理相结合的实践实施。通过将机器学习与敏感性分析相结合,在经验验证和系统模型改进的支持下,本研究克服了传统空气污染分析方法的主要局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信