{"title":"New insights unveiled: Identifying novel genomic regions governing zinc content in rice for enhanced biofortification","authors":"Abhinav Sao , Hemant Sahu , Ajit Kumar Mannade , Sunil Kumar Nair , Vinay Premi , Girish Chandel , Tarun Kumar Thakur , Amit Kumar , Rupesh Kumar , Dharmendra Singh Tomar","doi":"10.1016/j.pce.2025.104037","DOIUrl":null,"url":null,"abstract":"<div><div>Micronutrient deficiencies, notably zinc (Zn) and iron (Fe), affect approximately two billion people worldwide, significantly burdening developing countries. Diets predominantly based on rice, which sustains over 90 % of the Asian population, are frequently deficient in these essential micronutrients. This investigation evaluated the zinc concentration in milled rice (MR) across 90 Advanced Breeding Lines (ABLs), revealing a substantial variation in zinc content ranging from 13.7 to 33.80 ppm. A GWAS using the FarmCPU model effectively controlled for population structure and kinship, revealing genetic loci associated with zinc concentration in rice grains. The analysis uncovered 11 significant marker-trait associations (MTAs) related to zinc content, with several MTAs co-localizing with known zinc-associated traits, suggesting the potential for simultaneous enhancement of these traits. These robust MTAs present valuable targets for biofortification strategies aimed at increasing the zinc content in rice grains, thereby contributing to the mitigation of zinc deficiency among rice consumers. The 11 identified MTAs for Zn traits can fast-track marker-assisted breeding for developing zinc-enriched rice varieties. These findings are pivotal for ongoing initiatives to address micronutrient malnutrition and improve the nutritional quality of rice. Additionally, these MTAs facilitate gene pyramiding and genomic selection to boost breeding precision and efficiency.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"140 ","pages":"Article 104037"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706525001871","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Micronutrient deficiencies, notably zinc (Zn) and iron (Fe), affect approximately two billion people worldwide, significantly burdening developing countries. Diets predominantly based on rice, which sustains over 90 % of the Asian population, are frequently deficient in these essential micronutrients. This investigation evaluated the zinc concentration in milled rice (MR) across 90 Advanced Breeding Lines (ABLs), revealing a substantial variation in zinc content ranging from 13.7 to 33.80 ppm. A GWAS using the FarmCPU model effectively controlled for population structure and kinship, revealing genetic loci associated with zinc concentration in rice grains. The analysis uncovered 11 significant marker-trait associations (MTAs) related to zinc content, with several MTAs co-localizing with known zinc-associated traits, suggesting the potential for simultaneous enhancement of these traits. These robust MTAs present valuable targets for biofortification strategies aimed at increasing the zinc content in rice grains, thereby contributing to the mitigation of zinc deficiency among rice consumers. The 11 identified MTAs for Zn traits can fast-track marker-assisted breeding for developing zinc-enriched rice varieties. These findings are pivotal for ongoing initiatives to address micronutrient malnutrition and improve the nutritional quality of rice. Additionally, these MTAs facilitate gene pyramiding and genomic selection to boost breeding precision and efficiency.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).