The structure of the Tad pilus alignment complex reveals a periplasmic conduit for pilus extension

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sasha L. Evans, Iryna Peretiazhko, Sahil Y. Karnani, Lindsey S. Marmont, James H. R. Wheeler, Boo Shan Tseng, William M. Durham, John C. Whitney, Julien R. C. Bergeron
{"title":"The structure of the Tad pilus alignment complex reveals a periplasmic conduit for pilus extension","authors":"Sasha L. Evans, Iryna Peretiazhko, Sahil Y. Karnani, Lindsey S. Marmont, James H. R. Wheeler, Boo Shan Tseng, William M. Durham, John C. Whitney, Julien R. C. Bergeron","doi":"10.1038/s41467-025-62457-8","DOIUrl":null,"url":null,"abstract":"<p>The Tad (<u>T</u>ight <u>ad</u>herence) pilus is a bacterial appendage implicated in virulence, cell-cell aggregation, and biofilm formation. Despite its homology to the well-characterised Type IV pilus, the structure and assembly mechanism of the Tad pilus are poorly understood. Here, we investigate the role of the Tad pilus protein RcpC from <i>Pseudomonas aeruginosa</i>. Our analyses reveal that RcpC forms a dodecameric periplasmic complex, anchored to the inner membrane by a transmembrane helix, and interacting with the outer membrane secretin RcpA. We use single-particle Cryo-EM to elucidate the structure of the RcpC dodecamer, and cell-based assays to demonstrate that the RcpC-RcpA complex is essential for Tad-mediated cell-cell aggregation. Collectively, these data demonstrate that RcpC forms the Tad pilus alignment complex, which provides a conduit across the periplasm for the Tad pilus filament to access the extracellular milieu. Our experimental data and structure-based model allow us to propose a mechanism for Tad plus assembly.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"111 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62457-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Tad (Tight adherence) pilus is a bacterial appendage implicated in virulence, cell-cell aggregation, and biofilm formation. Despite its homology to the well-characterised Type IV pilus, the structure and assembly mechanism of the Tad pilus are poorly understood. Here, we investigate the role of the Tad pilus protein RcpC from Pseudomonas aeruginosa. Our analyses reveal that RcpC forms a dodecameric periplasmic complex, anchored to the inner membrane by a transmembrane helix, and interacting with the outer membrane secretin RcpA. We use single-particle Cryo-EM to elucidate the structure of the RcpC dodecamer, and cell-based assays to demonstrate that the RcpC-RcpA complex is essential for Tad-mediated cell-cell aggregation. Collectively, these data demonstrate that RcpC forms the Tad pilus alignment complex, which provides a conduit across the periplasm for the Tad pilus filament to access the extracellular milieu. Our experimental data and structure-based model allow us to propose a mechanism for Tad plus assembly.

Abstract Image

Tad菌毛排列复合体的结构揭示了菌毛延伸的质周导管
Tad(紧密粘附)菌毛是一种细菌附属物,与毒力、细胞-细胞聚集和生物膜形成有关。尽管它与特征良好的IV型菌毛同源,但人们对Tad菌毛的结构和组装机制知之甚少。在此,我们研究了铜绿假单胞菌中Tad菌毛蛋白RcpC的作用。我们的分析表明,RcpC形成了一个十二聚体的质周复合体,通过跨膜螺旋固定在内膜上,并与外膜分泌素RcpA相互作用。我们使用单颗粒冷冻电镜来阐明RcpC十二聚体的结构,并基于细胞的分析来证明RcpC- rcpa复合物对于tad介导的细胞-细胞聚集是必不可少的。总的来说,这些数据表明RcpC形成了Tad菌毛排列复合体,它为Tad菌毛丝提供了一个穿过周质进入细胞外环境的管道。我们的实验数据和基于结构的模型使我们能够提出Tad +组装的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信