Herman van der Kooij, Edwin H. F. van Asseldonk, Massimo Sartori, Chiara Basla, Adrian Esser, Robert Riener
{"title":"AI in therapeutic and assistive exoskeletons and exosuits: Influences on performance and autonomy","authors":"Herman van der Kooij, Edwin H. F. van Asseldonk, Massimo Sartori, Chiara Basla, Adrian Esser, Robert Riener","doi":"10.1126/scirobotics.adt7329","DOIUrl":null,"url":null,"abstract":"Therapeutic and assistive exoskeletons and exosuits show promise in both clinical and real-world settings. Improving their autonomy can enhance usability, effectiveness, and cost efficiency. This Review presents a generic control framework for autonomous operation of upper and lower limb devices and reviews current advancements and future directions. We highlight how data-driven machine learning aids in intention recognition, synchronization, patient assessment, and task-agnostic control. In addition, we discuss how reinforcement learning optimizes control policies through digital human twins and how generative AI supports therapy planning and patient engagement. Richer patient-specific data and more accurate digital twins are needed for clinical validation and widespread deployment.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"20 1","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1126/scirobotics.adt7329","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic and assistive exoskeletons and exosuits show promise in both clinical and real-world settings. Improving their autonomy can enhance usability, effectiveness, and cost efficiency. This Review presents a generic control framework for autonomous operation of upper and lower limb devices and reviews current advancements and future directions. We highlight how data-driven machine learning aids in intention recognition, synchronization, patient assessment, and task-agnostic control. In addition, we discuss how reinforcement learning optimizes control policies through digital human twins and how generative AI supports therapy planning and patient engagement. Richer patient-specific data and more accurate digital twins are needed for clinical validation and widespread deployment.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.