Structural basis for the evolution of a domesticated group II intron–like reverse transcriptase to function in host cell DNA repair

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Seung Kuk Park, Mo Guo, Jennifer L. Stamos, Wantae Kim, Sidae Lee, Y. Jessie Zhang, Alan M. Lambowitz
{"title":"Structural basis for the evolution of a domesticated group II intron–like reverse transcriptase to function in host cell DNA repair","authors":"Seung Kuk Park, Mo Guo, Jennifer L. Stamos, Wantae Kim, Sidae Lee, Y. Jessie Zhang, Alan M. Lambowitz","doi":"10.1073/pnas.2504208122","DOIUrl":null,"url":null,"abstract":"A previous study found that a bacterial group II intron–like reverse transcriptase (G2L4 RT) evolved to function in double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-long terminal repeat (non-LTR)-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing unique structural adaptations that optimized its cellular function in DSBR. These included an RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering a DNA substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ. Our findings reveal how an RT can function in DNA repair and suggest ways of optimizing related RTs for genome engineering applications.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"13 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2504208122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A previous study found that a bacterial group II intron–like reverse transcriptase (G2L4 RT) evolved to function in double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-long terminal repeat (non-LTR)-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing unique structural adaptations that optimized its cellular function in DSBR. These included an RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering a DNA substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ. Our findings reveal how an RT can function in DNA repair and suggest ways of optimizing related RTs for genome engineering applications.
驯化II组内含子样逆转录酶在宿主细胞DNA修复中的功能进化的结构基础
先前的一项研究发现,细菌II组内含子样逆转录酶(G2L4 RT)通过微同源介导的末端连接(MMEJ)进化为在双链断裂修复(DSBR)中起作用,而可移动的II组内含子编码的RT具有基本的DSBR活性,利用非长末端重复(non-long terminal repeat, non-LTR)逆转录因子RTs的保守结构特征。在这里,我们确定了G2L4 RT脱酶和snapback DNA合成结构,揭示了独特的结构适应性,优化了其在DSBR中的细胞功能。其中包括RT3a结构,该结构在遇到DNA底物之前将脱酶稳定在非活性构象中;带有保守残基的较长的n端延伸/ rt0环与修饰的活性位点一起有利于链退火;以及一个保守的二聚体界面,该界面将G2L4 RT同型二聚体定位于DSBR位点,两种单体都定位于MMEJ。我们的发现揭示了RT如何在DNA修复中发挥作用,并提出了优化相关RT用于基因组工程应用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信