Longfei Wang, Xinyu Jiang, Wu Jiao, Junrong Mao, Wenxue Ye, Yangrong Cao, Qingshan Chen, Qingxin Song
{"title":"Pangenome analysis provides insights into legume evolution and breeding","authors":"Longfei Wang, Xinyu Jiang, Wu Jiao, Junrong Mao, Wenxue Ye, Yangrong Cao, Qingshan Chen, Qingxin Song","doi":"10.1038/s41588-025-02280-5","DOIUrl":null,"url":null,"abstract":"<p>Grain legumes hold great promise for advancing sustainable agriculture. Although the evolutionary history of legume species has been investigated, the conserved mechanisms that drive adaptive evolution and govern agronomic improvement remain elusive. Here we present high-quality genome assemblies for nine widely consumed pulses, including common bean, chickpea, pea, lentil, faba bean, pigeon pea, cowpea, mung bean and hyacinth bean. Pangenome analysis reveals the expansion of distinct gene sets in cool-season and warm-season legumes, highlighting the role of gene birth and duplication in the autoregulation of nodulation. Notably, hundreds of genes undergo convergent selection during the evolution of legumes, affecting agronomic traits such as seed weight. In addition, we demonstrate that tandem amplification of transposable elements in gene-depleted regions has a crucial role in driving genome enlargement and the formation of regulatory elements in cool-season legumes. Our results provide insights into the molecular mechanisms underlying the diversification of legumes and represent a valuable resource for facilitating legume breeding.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"31 1","pages":""},"PeriodicalIF":29.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02280-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Grain legumes hold great promise for advancing sustainable agriculture. Although the evolutionary history of legume species has been investigated, the conserved mechanisms that drive adaptive evolution and govern agronomic improvement remain elusive. Here we present high-quality genome assemblies for nine widely consumed pulses, including common bean, chickpea, pea, lentil, faba bean, pigeon pea, cowpea, mung bean and hyacinth bean. Pangenome analysis reveals the expansion of distinct gene sets in cool-season and warm-season legumes, highlighting the role of gene birth and duplication in the autoregulation of nodulation. Notably, hundreds of genes undergo convergent selection during the evolution of legumes, affecting agronomic traits such as seed weight. In addition, we demonstrate that tandem amplification of transposable elements in gene-depleted regions has a crucial role in driving genome enlargement and the formation of regulatory elements in cool-season legumes. Our results provide insights into the molecular mechanisms underlying the diversification of legumes and represent a valuable resource for facilitating legume breeding.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution