Artificial intelligence in pediatric ophthalmology: a comparative study of ChatGPT-4.0 and DeepSeek-R1 performance.

IF 0.8 Q4 OPHTHALMOLOGY
Gamze Karataş, Mehmet Egemen Karataş
{"title":"Artificial intelligence in pediatric ophthalmology: a comparative study of ChatGPT-4.0 and DeepSeek-R1 performance.","authors":"Gamze Karataş, Mehmet Egemen Karataş","doi":"10.1080/09273972.2025.2536782","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>: This study aims to evaluate and compare the accuracy and performance of two large language models (LLMs), ChatGPT-4.0 and DeepSeek-R1, in answering pediatric ophthalmology-related questions. <i>Methods</i>: A total of 44 multiple-choice questions were selected, covering various subspecialties of pediatric ophthalmology. Both LLMs were tasked with answering these questions, and their responses were compared in terms of accuracy. <i>Results</i>: ChatGPT-4.0 correctly answered 82% of the questions, while DeepSeek-R1 achieved a higher accuracy rate of 93% (p: 0.06). In strabismus, ChatGPT-4.0 answered 70% of questions correctly, while DeepSeek-R1 achieved 82% (p: 0.50). In other subspecialties, ChatGPT-4.0 answered 89% correctly, and DeepSeek-R1 achieved 100% accuracy (p: 0.25). <i>Conclusion</i>: DeepSeek-R1 outperformed ChatGPT-4.0 in overall accuracy, particularly in pediatric ophthalmology. These findings suggest the need for further optimization of LLM models to enhance their performance and reliability in clinical settings, especially in pediatric ophthalmology.</p>","PeriodicalId":51700,"journal":{"name":"Strabismus","volume":" ","pages":"1-7"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strabismus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09273972.2025.2536782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to evaluate and compare the accuracy and performance of two large language models (LLMs), ChatGPT-4.0 and DeepSeek-R1, in answering pediatric ophthalmology-related questions. Methods: A total of 44 multiple-choice questions were selected, covering various subspecialties of pediatric ophthalmology. Both LLMs were tasked with answering these questions, and their responses were compared in terms of accuracy. Results: ChatGPT-4.0 correctly answered 82% of the questions, while DeepSeek-R1 achieved a higher accuracy rate of 93% (p: 0.06). In strabismus, ChatGPT-4.0 answered 70% of questions correctly, while DeepSeek-R1 achieved 82% (p: 0.50). In other subspecialties, ChatGPT-4.0 answered 89% correctly, and DeepSeek-R1 achieved 100% accuracy (p: 0.25). Conclusion: DeepSeek-R1 outperformed ChatGPT-4.0 in overall accuracy, particularly in pediatric ophthalmology. These findings suggest the need for further optimization of LLM models to enhance their performance and reliability in clinical settings, especially in pediatric ophthalmology.

人工智能在儿童眼科中的应用:ChatGPT-4.0与DeepSeek-R1性能的比较研究
目的:本研究旨在评估和比较ChatGPT-4.0和DeepSeek-R1两种大型语言模型(llm)在回答儿童眼科相关问题中的准确性和性能。方法:选取44道选择题,涵盖小儿眼科各亚专科。两位法学硕士都被要求回答这些问题,他们的回答在准确性方面进行了比较。结果:ChatGPT-4.0的正确率为82%,而DeepSeek-R1的正确率为93% (p: 0.06)。在斜视中,ChatGPT-4.0的正确率为70%,而DeepSeek-R1的正确率为82% (p: 0.50)。在其他子专业中,ChatGPT-4.0的正确率为89%,DeepSeek-R1的正确率为100% (p: 0.25)。结论:DeepSeek-R1在整体准确性上优于ChatGPT-4.0,特别是在儿童眼科方面。这些发现表明,需要进一步优化LLM模型,以提高其在临床环境中的性能和可靠性,特别是在儿童眼科。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strabismus
Strabismus OPHTHALMOLOGY-
CiteScore
1.60
自引率
11.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信