Samiya Kainat, Muhammad Sohail, Saira Rafique, Muneeza Mustafa, Uroosa Ejaz
{"title":"Prevalence of multidrug-resistant biofilm-forming pathogens in diabetic foot ulcers and antimicrobial activity of nanoparticles.","authors":"Samiya Kainat, Muhammad Sohail, Saira Rafique, Muneeza Mustafa, Uroosa Ejaz","doi":"10.3855/jidc.21000","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetic foot ulcers (DFU) are the main devastating complications for diabetic patients. The involvement of multidrug-resistant microorganisms with the ability to produce biofilms in DFUs renders them difficult to treat. Nanotechnology has emerged as an innovative and promising technology in the therapy of diabetic foot lesions. Therefore, this study was designed to assess the prevalence of drug resistance and biofilm-forming pathogens in DFU and the antimicrobial activity of nanoparticles against these pathogens.</p><p><strong>Methodology: </strong>A total of 111 adults with diabetic foot ulcers were randomly included. The clinical parameters and data of the classification and grading of the wound, along with microbiological factors, were analyzed.</p><p><strong>Results: </strong>Nanoparticles were synthesized from Withania coagulans and Fagonia cretica. The results showed that the majority of patients were male (76%), with an average age of 54 years. The majority of ulcers were polymicrobial (56%), while Staphylococcus aureus (21.2%) was the predominant pathogen. A significant increase in methicillin-resistant Staphylococcus aureus (76.5%), extended-spectrum β-lactamase (ESBL) producers (55.8%), carbapenem-resistant Pseudomonas aeruginosa (46%), and vancomycin-resistant Enterococci (18.1%) was observed. Gram-negative isolates (31%), particularly Pseudomonas aeruginosa, exhibited strong biofilm formation activity compared to gram-positive (6%) and fungal isolates (24%).</p><p><strong>Conclusions: </strong>The tested nanoparticles showed significant antimicrobial activity against strong biofilm forming bacterial and fungal isolates. Controlling certain extrinsic and metabolic parameters and comprehensively evaluating nanoparticle-based therapeutics can serve as powerful tools in curing chronic diabetic wounds.</p>","PeriodicalId":49160,"journal":{"name":"Journal of Infection in Developing Countries","volume":"19 7","pages":"1055-1065"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infection in Developing Countries","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3855/jidc.21000","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Diabetic foot ulcers (DFU) are the main devastating complications for diabetic patients. The involvement of multidrug-resistant microorganisms with the ability to produce biofilms in DFUs renders them difficult to treat. Nanotechnology has emerged as an innovative and promising technology in the therapy of diabetic foot lesions. Therefore, this study was designed to assess the prevalence of drug resistance and biofilm-forming pathogens in DFU and the antimicrobial activity of nanoparticles against these pathogens.
Methodology: A total of 111 adults with diabetic foot ulcers were randomly included. The clinical parameters and data of the classification and grading of the wound, along with microbiological factors, were analyzed.
Results: Nanoparticles were synthesized from Withania coagulans and Fagonia cretica. The results showed that the majority of patients were male (76%), with an average age of 54 years. The majority of ulcers were polymicrobial (56%), while Staphylococcus aureus (21.2%) was the predominant pathogen. A significant increase in methicillin-resistant Staphylococcus aureus (76.5%), extended-spectrum β-lactamase (ESBL) producers (55.8%), carbapenem-resistant Pseudomonas aeruginosa (46%), and vancomycin-resistant Enterococci (18.1%) was observed. Gram-negative isolates (31%), particularly Pseudomonas aeruginosa, exhibited strong biofilm formation activity compared to gram-positive (6%) and fungal isolates (24%).
Conclusions: The tested nanoparticles showed significant antimicrobial activity against strong biofilm forming bacterial and fungal isolates. Controlling certain extrinsic and metabolic parameters and comprehensively evaluating nanoparticle-based therapeutics can serve as powerful tools in curing chronic diabetic wounds.
期刊介绍:
The Journal of Infection in Developing Countries (JIDC) is an international journal, intended for the publication of scientific articles from Developing Countries by scientists from Developing Countries.
JIDC is an independent, on-line publication with an international editorial board. JIDC is open access with no cost to view or download articles and reasonable cost for publication of research artcles, making JIDC easily availiable to scientists from resource restricted regions.