Wen Wu, Menglei Xiong, Chen Jiang, Xinru Zhou, Yingjie Ma, Tao Wang, Shan He, Baicheng Ma
{"title":"The Role of Circular RNA in the Progression of Gliomas and Its Potential Clinical Applications.","authors":"Wen Wu, Menglei Xiong, Chen Jiang, Xinru Zhou, Yingjie Ma, Tao Wang, Shan He, Baicheng Ma","doi":"10.3390/biology14070795","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are single-stranded noncoding RNAs with a covalently closed loop structure. They are known for their stability, abundance, and highly conserved nature. Their expression is often specific to tissues or developmental stages. They interact with microRNAs (miRNAs) and RNA-binding proteins (RBPs) and they undergo N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications, further affecting gene transcription and translation. Increasing evidence over the past decades has revealed that dysregulated circRNA expression is associated with various neurological disorders, particularly the glioma, one of the most malignant tumors with a poor prognosis. Due to the presence of the blood-brain barrier (BBB) and drug resistance, conventional therapeutic approaches have shown limited efficacy. Recently, increasing attention has been directed toward precisely targeted therapies, with circRNAs emerging as promising molecules for cancer treatment. Studies indicate that circRNAs play a key role in glioma proliferation and metastasis. Substantial evidence indicates that exosomes can package circRNAs and facilitate their transport across the BBB into brain tissue, highlighting the potential of circRNAs as therapeutic targets for glioma. This review summarizes circRNAs' functional mechanisms, clinical application relevance, and current limitations. It offers future research directions in this evolving field, aiming to encourage further research on circRNAs' therapeutic applications and contribute to the development of novel glioma-treatment strategies.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14070795","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are single-stranded noncoding RNAs with a covalently closed loop structure. They are known for their stability, abundance, and highly conserved nature. Their expression is often specific to tissues or developmental stages. They interact with microRNAs (miRNAs) and RNA-binding proteins (RBPs) and they undergo N6-methyladenosine (m6A) modifications, further affecting gene transcription and translation. Increasing evidence over the past decades has revealed that dysregulated circRNA expression is associated with various neurological disorders, particularly the glioma, one of the most malignant tumors with a poor prognosis. Due to the presence of the blood-brain barrier (BBB) and drug resistance, conventional therapeutic approaches have shown limited efficacy. Recently, increasing attention has been directed toward precisely targeted therapies, with circRNAs emerging as promising molecules for cancer treatment. Studies indicate that circRNAs play a key role in glioma proliferation and metastasis. Substantial evidence indicates that exosomes can package circRNAs and facilitate their transport across the BBB into brain tissue, highlighting the potential of circRNAs as therapeutic targets for glioma. This review summarizes circRNAs' functional mechanisms, clinical application relevance, and current limitations. It offers future research directions in this evolving field, aiming to encourage further research on circRNAs' therapeutic applications and contribute to the development of novel glioma-treatment strategies.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.