{"title":"Molecular and Genetic Pathogenesis of Oral Cancer: A Basis for Customized Diagnosis and Treatment.","authors":"Leonor Barroso, Pedro Veiga, Joana Barbosa Melo, Isabel Marques Carreira, Ilda Patrícia Ribeiro","doi":"10.3390/biology14070842","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety of their upper aerodigestive tract. The most altered signaling pathways are the PI3K/AKT/mTOR, TP53, RB, and the WNT/β-catenin pathways. Genomic and molecular cytogenetic analyses have revealed frequent losses at 3p, 8p, 9p, and 18q, along with gains at 3q, 7p, 8q, and 11q, and several genes frequently affected have been identified, such as <i>TP53</i>, <i>CCND1</i>, <i>CTTN</i>, <i>CDKN2A</i>, <i>EGFR</i>, <i>HRAS</i>, <i>PI3K</i>, <i>ADAM9</i>, <i>MGAM</i>, <i>SIRPB1</i>, and <i>FAT1</i>, among others. Various epigenetic alterations were also found, such as the global hypomethylation and hypermethylation of <i>CDKN2A</i>, <i>APC</i>, <i>MGMT</i>, <i>PTEN</i>, <i>CDH1</i>, <i>TFP12</i>, <i>SOX17</i>, <i>GATA4</i>, <i>ECAD</i>, <i>MGMT</i>, and <i>DAPK</i>. Several microRNAs are upregulated in oral cancer, including miR-21, miR-24, miR-31, miR-184, miR-211, miR-221, and miR-222, while others are downregulated, such as miR-203, miR-100, miR-200, miR-133a, miR-133b, miR-138, and miR-375. The knowledge of this molecular pathogenesis has not yet been translated into clinical practice, apart from the use of cetuximab, an EGFR antibody. Oral tumors are also genetically heterogenous and affect several pathways, which means that, due to the continuous evolution of these genetic alterations, a single biopsy is not sufficient to fully evaluate the most adequate molecular targets when more drugs become available. Liquid biopsies, either resorting to circulating tumor cells, extracellular vesicles or cell-free nucleic acids, have the potential to bypass this problem, and have potential prognostic and staging value. We critically review the current knowledge on the molecular, genetic and epigenetic alterations in oral cancer, as well as the applications and challenges of liquid biopsies in its diagnosis, follow-up, and prognostic stratification.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14070842","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety of their upper aerodigestive tract. The most altered signaling pathways are the PI3K/AKT/mTOR, TP53, RB, and the WNT/β-catenin pathways. Genomic and molecular cytogenetic analyses have revealed frequent losses at 3p, 8p, 9p, and 18q, along with gains at 3q, 7p, 8q, and 11q, and several genes frequently affected have been identified, such as TP53, CCND1, CTTN, CDKN2A, EGFR, HRAS, PI3K, ADAM9, MGAM, SIRPB1, and FAT1, among others. Various epigenetic alterations were also found, such as the global hypomethylation and hypermethylation of CDKN2A, APC, MGMT, PTEN, CDH1, TFP12, SOX17, GATA4, ECAD, MGMT, and DAPK. Several microRNAs are upregulated in oral cancer, including miR-21, miR-24, miR-31, miR-184, miR-211, miR-221, and miR-222, while others are downregulated, such as miR-203, miR-100, miR-200, miR-133a, miR-133b, miR-138, and miR-375. The knowledge of this molecular pathogenesis has not yet been translated into clinical practice, apart from the use of cetuximab, an EGFR antibody. Oral tumors are also genetically heterogenous and affect several pathways, which means that, due to the continuous evolution of these genetic alterations, a single biopsy is not sufficient to fully evaluate the most adequate molecular targets when more drugs become available. Liquid biopsies, either resorting to circulating tumor cells, extracellular vesicles or cell-free nucleic acids, have the potential to bypass this problem, and have potential prognostic and staging value. We critically review the current knowledge on the molecular, genetic and epigenetic alterations in oral cancer, as well as the applications and challenges of liquid biopsies in its diagnosis, follow-up, and prognostic stratification.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.