{"title":"Intervention Potential of a Recombinant Tarim Red Deer HGF Protein in a Mouse Model of Alcoholic Liver Disease.","authors":"Hong Chen, Chuan Lin, Xin Xiang, Chenchen Yang, Chunmei Han, Qinghua Gao","doi":"10.3390/biology14070790","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the recombinant Tarim red deer hepatocyte growth factor (HGF) in a mouse model to develop an HGF/c-Met-based regenerative therapy for alcoholic liver disease. We constructed a recombinant HGF fusion protein and expressed and purified it in <i>Escherichia coli</i>. The recombinant protein was administered via intravenous injection to treat mice with alcoholic liver disease induced by chronic alcohol feeding followed by acute alcohol gavage (NIAAA model). The therapeutic effects were evaluated based on liver tissue histology and biochemical indicators. The recombinant Tarim red deer HGF protein successfully reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice, increased serum albumin (ALB) levels, decreased hepatic steatosis and triglyceride (TG) levels, lowered hepatic malondialdehyde (MDA) levels, and increased the levels of the antioxidants glutathione (GSH) and superoxide dismutase (SOD) in the liver. Additionally, it enhanced the proliferation capacity of liver cells, thereby promoting liver regeneration. In conclusion, our study demonstrates that recombinant Tarim red deer HGF effectively reduces liver damage in a mouse model of alcoholic liver disease.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14070790","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the recombinant Tarim red deer hepatocyte growth factor (HGF) in a mouse model to develop an HGF/c-Met-based regenerative therapy for alcoholic liver disease. We constructed a recombinant HGF fusion protein and expressed and purified it in Escherichia coli. The recombinant protein was administered via intravenous injection to treat mice with alcoholic liver disease induced by chronic alcohol feeding followed by acute alcohol gavage (NIAAA model). The therapeutic effects were evaluated based on liver tissue histology and biochemical indicators. The recombinant Tarim red deer HGF protein successfully reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice, increased serum albumin (ALB) levels, decreased hepatic steatosis and triglyceride (TG) levels, lowered hepatic malondialdehyde (MDA) levels, and increased the levels of the antioxidants glutathione (GSH) and superoxide dismutase (SOD) in the liver. Additionally, it enhanced the proliferation capacity of liver cells, thereby promoting liver regeneration. In conclusion, our study demonstrates that recombinant Tarim red deer HGF effectively reduces liver damage in a mouse model of alcoholic liver disease.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.