Sofia Michailidou, Maria Kyritsi, Eleftherios Pavlou, Antiopi Tsoureki, Anagnostis Argiriou
{"title":"Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds.","authors":"Sofia Michailidou, Maria Kyritsi, Eleftherios Pavlou, Antiopi Tsoureki, Anagnostis Argiriou","doi":"10.3390/biology14070845","DOIUrl":null,"url":null,"abstract":"<p><p>Ιn this study, we evaluated the genetic resources of nine Greek sheep breeds. The genotyping data of 292 animals were acquired from Illumina's OvineSNP50 Genotyping BeadChip. The genetic diversity and inbreeding levels were evaluated using the observed and expected heterozygosity indices, the F<sub>IS</sub> inbreeding coefficient, and runs of homozygosity (ROH). The genetic differentiation of breeds was assessed using the F<sub>ST</sub> index, whereas their population structure was analyzed using admixture and principal components analysis (PCA). Historical recombination patterns and genetic drift were evaluated based on linkage disequilibrium, effective population sizes, and gene flow analysis to reveal migration patterns. PCA revealed distinct clusters mostly separating mountainous, insular, and lowland breeds. The F<sub>ST</sub> value was the lowest between Serres and Karagouniko breeds (0.050). Admixture analysis revealed a genetic substructure for Serres and Kalarritiko breeds, while Chios, followed by Katsika, demonstrated the highest within-breed genetic uniformity. ROH analysis revealed low levels of inbreeding for all breeds. Genetic introgression from both Anatolia and Eastern Europe has been evidenced for Greek sheep breeds. The results also revealed that Greek sheep breeds maintain adequate levels of genetic diversity, without signs of excessive inbreeding, and can serve as valuable resources for the conservation of local biodiversity.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14070845","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ιn this study, we evaluated the genetic resources of nine Greek sheep breeds. The genotyping data of 292 animals were acquired from Illumina's OvineSNP50 Genotyping BeadChip. The genetic diversity and inbreeding levels were evaluated using the observed and expected heterozygosity indices, the FIS inbreeding coefficient, and runs of homozygosity (ROH). The genetic differentiation of breeds was assessed using the FST index, whereas their population structure was analyzed using admixture and principal components analysis (PCA). Historical recombination patterns and genetic drift were evaluated based on linkage disequilibrium, effective population sizes, and gene flow analysis to reveal migration patterns. PCA revealed distinct clusters mostly separating mountainous, insular, and lowland breeds. The FST value was the lowest between Serres and Karagouniko breeds (0.050). Admixture analysis revealed a genetic substructure for Serres and Kalarritiko breeds, while Chios, followed by Katsika, demonstrated the highest within-breed genetic uniformity. ROH analysis revealed low levels of inbreeding for all breeds. Genetic introgression from both Anatolia and Eastern Europe has been evidenced for Greek sheep breeds. The results also revealed that Greek sheep breeds maintain adequate levels of genetic diversity, without signs of excessive inbreeding, and can serve as valuable resources for the conservation of local biodiversity.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.