Lei Zhang, Fulai Zhang, Wentao Du, Mengting Hu, Ying Hao, Shuqi Ding, Huijuan Tian, Dan Zhang
{"title":"Machine Learning Analysis of Maize Seedling Traits Under Drought Stress.","authors":"Lei Zhang, Fulai Zhang, Wentao Du, Mengting Hu, Ying Hao, Shuqi Ding, Huijuan Tian, Dan Zhang","doi":"10.3390/biology14070787","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (<i>Zea mays</i> L.) seedlings. A total of 78 maize hybrids were employed in this study to replicate drought conditions through the potting method. The maize seedlings were subjected to a 10-day period of water breakage following a standard watering cycle until they reached the third leaf collar (V3) stage. Parameters including plant height, stem diameter, chlorophyll content, and root number were assessed. The eight phenotypic traits include the fresh and dry weights of both the aboveground and underground parts. Three machine learning methods-random forest (RF), K-nearest neighbor (KNN), and extreme gradient boosting (XGBoost)-were employed to systematically analyze the relevant traits of maize seedlings' drought tolerance and to assess their predictive performance in this regard. The findings indicated that plant height, aboveground weight, and chlorophyll content constituted the primary indices for phenotyping maize seedlings under drought conditions. The XGBoost model demonstrated optimal performance in the classification (AUC = 0.993) and regression (R<sup>2</sup> = 0.863) tasks, establishing itself as the most effective prediction model. This study provides a foundation for the feasibility and reliability of screening drought-tolerant maize varieties and refining precision breeding strategies.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14070787","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (Zea mays L.) seedlings. A total of 78 maize hybrids were employed in this study to replicate drought conditions through the potting method. The maize seedlings were subjected to a 10-day period of water breakage following a standard watering cycle until they reached the third leaf collar (V3) stage. Parameters including plant height, stem diameter, chlorophyll content, and root number were assessed. The eight phenotypic traits include the fresh and dry weights of both the aboveground and underground parts. Three machine learning methods-random forest (RF), K-nearest neighbor (KNN), and extreme gradient boosting (XGBoost)-were employed to systematically analyze the relevant traits of maize seedlings' drought tolerance and to assess their predictive performance in this regard. The findings indicated that plant height, aboveground weight, and chlorophyll content constituted the primary indices for phenotyping maize seedlings under drought conditions. The XGBoost model demonstrated optimal performance in the classification (AUC = 0.993) and regression (R2 = 0.863) tasks, establishing itself as the most effective prediction model. This study provides a foundation for the feasibility and reliability of screening drought-tolerant maize varieties and refining precision breeding strategies.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.