Beneficial communities from core bacterial microbiota of Oryza sativa L. soil and leaves perform dynamic role in growth promotion and suppression of bacterial leaf blight.
IF 4.2 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Syed Atif Hasan Naqvi, Ummad Ud Din Umar, Ateeq Ur Rehman
{"title":"Beneficial communities from core bacterial microbiota of Oryza sativa L. soil and leaves perform dynamic role in growth promotion and suppression of bacterial leaf blight.","authors":"Syed Atif Hasan Naqvi, Ummad Ud Din Umar, Ateeq Ur Rehman","doi":"10.1007/s11274-025-04461-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), severely threatens global rice production, highlighting the urgent need for sustainable alternatives to chemical pesticides. This study investigates the rhizosphere and phyllosphere microbiomes of Oryza sativa in Punjab, Pakistan, to identify native biocontrol agents (BCAs) with potential to suppress BLB. Using 16S rRNA amplicon sequencing (V3-V9 regions), we analyzed soil and leaf samples from 10 agricultural districts. Microbial diversity, community structure, and functional potential were assessed via bioinformatics tools (QIIME 2, DADA2, PICRUSt2), with a focus on taxa antagonistic to Xoo. Healthy rhizospheres exhibited significantly higher alpha diversity (Shannon index: 6.8 vs. 4.2 in leaves; *p* < 0.001), dominated by copiotrophic taxa (Proteobacteria, Bacteroidetes) linked to organic inputs and root exudates. Diseased soils favored oligotrophic Actinobacteria and Chloroflexi. Functional metagenomics revealed enrichment of siderophore biosynthesis, antibiotic production, and nutrient-cycling genes in healthy soils. Antagonistic genera (Bacillus, Pseudomonas, Streptomyces) demonstrated chitinase and surfactin activity against Xoo, while diseased samples showed elevated Xanthomonas and Erwinia abundances correlating with BLB severity. Native BCAs outperformed non-native strains in colonization and nutrient competition, highlighting their adaptability to local agroecological conditions. Our findings position native BCAs as pivotal tools for BLB suppression and sustainable agriculture, reducing reliance on synthetic chemicals. Field trials confirmed that microbial consortia formulations reduced BLB incidence by 40% and increased yield by 18%. These findings highlight the potential of microbiome-driven strategies to mitigate BLB, reduce chemical reliance, and foster sustainable agricultural practices. Future work should integrate multi-omics approaches to optimize microbial solutions for climate resilience and scale their adoption through policy frameworks.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 8","pages":"285"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04461-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), severely threatens global rice production, highlighting the urgent need for sustainable alternatives to chemical pesticides. This study investigates the rhizosphere and phyllosphere microbiomes of Oryza sativa in Punjab, Pakistan, to identify native biocontrol agents (BCAs) with potential to suppress BLB. Using 16S rRNA amplicon sequencing (V3-V9 regions), we analyzed soil and leaf samples from 10 agricultural districts. Microbial diversity, community structure, and functional potential were assessed via bioinformatics tools (QIIME 2, DADA2, PICRUSt2), with a focus on taxa antagonistic to Xoo. Healthy rhizospheres exhibited significantly higher alpha diversity (Shannon index: 6.8 vs. 4.2 in leaves; *p* < 0.001), dominated by copiotrophic taxa (Proteobacteria, Bacteroidetes) linked to organic inputs and root exudates. Diseased soils favored oligotrophic Actinobacteria and Chloroflexi. Functional metagenomics revealed enrichment of siderophore biosynthesis, antibiotic production, and nutrient-cycling genes in healthy soils. Antagonistic genera (Bacillus, Pseudomonas, Streptomyces) demonstrated chitinase and surfactin activity against Xoo, while diseased samples showed elevated Xanthomonas and Erwinia abundances correlating with BLB severity. Native BCAs outperformed non-native strains in colonization and nutrient competition, highlighting their adaptability to local agroecological conditions. Our findings position native BCAs as pivotal tools for BLB suppression and sustainable agriculture, reducing reliance on synthetic chemicals. Field trials confirmed that microbial consortia formulations reduced BLB incidence by 40% and increased yield by 18%. These findings highlight the potential of microbiome-driven strategies to mitigate BLB, reduce chemical reliance, and foster sustainable agricultural practices. Future work should integrate multi-omics approaches to optimize microbial solutions for climate resilience and scale their adoption through policy frameworks.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.