Bushra Kanwal, Arooj Iman, Shamsa Kanwal, Amal K Alkhalifa
{"title":"Estimation of Hankel inequalities of symmetric starlike functions in crescent-shaped domains and their application in image processing.","authors":"Bushra Kanwal, Arooj Iman, Shamsa Kanwal, Amal K Alkhalifa","doi":"10.1038/s41598-025-12935-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores some geometric properties of the class of symmetric starlike functions associated with a Crescent-shaped domain denoted by [Formula: see text]. Initially, we establish key coefficient inequalities and investigate upper bounds for the 2nd and 3rd order Hankel determinants. All the obtained results are sharp. These bounds provide deeper insights into the structural behavior of this class and contribute to a broader understanding of Geometric Function Theory. In addition to the theoretical findings, the practical implications of the results obtained are demonstrated in the domain of image processing. We used our estimated sharp Hankel determinants to develop a novel algorithm for image enhancement. The performance of the algorithm is evaluated on different image datasets of varying dimensions, with key quality metrics such as PSNR, SSIM, PCC, and MAE. Our experimental results indicate a significant improvement over conventional image enhancement techniques, particularly in retaining structural integrity and reducing distortions. In addition, a comparative study highlights the effectiveness of the proposed algorithm compared to existing methods reported in the literature, demonstrating its potential to enhance image quality in practical applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27402"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12935-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores some geometric properties of the class of symmetric starlike functions associated with a Crescent-shaped domain denoted by [Formula: see text]. Initially, we establish key coefficient inequalities and investigate upper bounds for the 2nd and 3rd order Hankel determinants. All the obtained results are sharp. These bounds provide deeper insights into the structural behavior of this class and contribute to a broader understanding of Geometric Function Theory. In addition to the theoretical findings, the practical implications of the results obtained are demonstrated in the domain of image processing. We used our estimated sharp Hankel determinants to develop a novel algorithm for image enhancement. The performance of the algorithm is evaluated on different image datasets of varying dimensions, with key quality metrics such as PSNR, SSIM, PCC, and MAE. Our experimental results indicate a significant improvement over conventional image enhancement techniques, particularly in retaining structural integrity and reducing distortions. In addition, a comparative study highlights the effectiveness of the proposed algorithm compared to existing methods reported in the literature, demonstrating its potential to enhance image quality in practical applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.