Abdurrahman Keskin, Hani J Shayya, Dario Sirabella, Achchhe Patel, Barbara Corneo, Marko Jovanovic
{"title":"Temporal multiomics gene expression data of human embryonic stem cell-derived cardiomyocyte differentiation.","authors":"Abdurrahman Keskin, Hani J Shayya, Dario Sirabella, Achchhe Patel, Barbara Corneo, Marko Jovanovic","doi":"10.1038/s41597-025-05655-9","DOIUrl":null,"url":null,"abstract":"<p><p>Human embryonic stem cells (hESCs) serve as a valuable in vitro model for studying early human developmental processes due to their ability to differentiate into all three germ layers. Here, we present a comprehensive multi-omics dataset generated by differentiating hESCs into cardiomyocytes via the mesodermal lineage, collecting samples at 10 distinct time points. We measured mRNA levels by mRNA sequencing (mRNA-seq), translation levels by ribosome profiling (Ribo-seq), and protein levels by quantitative mass spectrometry-based proteomics. Technical validation confirmed high quality and reproducibility across all datasets, with strong correlations between replicates. This extensive dataset provides critical insights into the complex regulatory mechanisms of cardiomyocyte differentiation and serves as a valuable resource for the research community, aiding in the exploration of mammalian development and gene regulation.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1308"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05655-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human embryonic stem cells (hESCs) serve as a valuable in vitro model for studying early human developmental processes due to their ability to differentiate into all three germ layers. Here, we present a comprehensive multi-omics dataset generated by differentiating hESCs into cardiomyocytes via the mesodermal lineage, collecting samples at 10 distinct time points. We measured mRNA levels by mRNA sequencing (mRNA-seq), translation levels by ribosome profiling (Ribo-seq), and protein levels by quantitative mass spectrometry-based proteomics. Technical validation confirmed high quality and reproducibility across all datasets, with strong correlations between replicates. This extensive dataset provides critical insights into the complex regulatory mechanisms of cardiomyocyte differentiation and serves as a valuable resource for the research community, aiding in the exploration of mammalian development and gene regulation.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.