Anti-inflammatory and anti-diabetic role of Ashwagandha (Withania somnifera) in a type 2 diabetes mellitus mouse model: a study using histological, molecular, and pathological parameters.

IF 2.5 3区 生物学 Q3 CELL BIOLOGY
Reem Hasaballah Alhasani, Ifat Alsharif, Aishah E Albalawi, Fahad Eid Albalawi, Zuhair M Mohammedsaleh, Fayez M Saleh, Jameel Barnawi, Nashmiah S Alshammari, Nasreen S Basoudan, Nahlah M Ghouth, Hailah M Almohaimeed, Tabinda Hasan, Sawsan Abd Ellatif, Mona H Soliman
{"title":"Anti-inflammatory and anti-diabetic role of Ashwagandha (Withania somnifera) in a type 2 diabetes mellitus mouse model: a study using histological, molecular, and pathological parameters.","authors":"Reem Hasaballah Alhasani, Ifat Alsharif, Aishah E Albalawi, Fahad Eid Albalawi, Zuhair M Mohammedsaleh, Fayez M Saleh, Jameel Barnawi, Nashmiah S Alshammari, Nasreen S Basoudan, Nahlah M Ghouth, Hailah M Almohaimeed, Tabinda Hasan, Sawsan Abd Ellatif, Mona H Soliman","doi":"10.1007/s00709-025-02096-4","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is an extensive metabolic disorder that imposes significant health and economic problems worldwide. It is characterized by chronic hyperglycemia, insulin resistance, and systemic inflammation. T2DM is linked with an increased risk of terrible difficulties, including cardiovascular disease, neuropathy, and nephropathy. The developing proofs suggest that natural compounds such as Ashwagandha (Withania somnifera) may have therapeutic potential due to their anti-inflammatory, antioxidant, and glucose-regulating properties. Ashwagandha is a traditional medicinal herb that is rich in withanolides and has demonstrated efficacy in previous studies; however, its comprehensive role in mitigating T2DM-related complications is underexplored. The current study seeks to assess the anti-inflammatory and antidiabetic effects of Ashwagandha in a high-fat diet (HFD) and low-dose streptozotocin (STZ)-induced T2DM mouse model. We have selected male C57BL/6 mice, which were allocated into four experimental groups, i.e. controls, STZ-induced diabetic controls, diabetic mice treated with Ashwagandha (200 mg/kg), and diabetic mice treated with metformin. The mice were treated for 8 weeks and then we assisted histological changes in pancreatic and hepatic tissues, with analysis of molecular markers of inflammation and glucose metabolism, and biochemical parameters such as blood glucose, insulin levels, lipid profiles, and oxidative stress markers. We have found a significant reduction in systemic inflammation, enhanced glucose tolerance, improved insulin sensitivity, and restored function of pancreatic β-cell. Furthermore, Ashwagandha treatment is predicted to relieve hepatic steatosis and adipose tissue inflammation by altering key oxidative stress and inflammatory pathways.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02096-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is an extensive metabolic disorder that imposes significant health and economic problems worldwide. It is characterized by chronic hyperglycemia, insulin resistance, and systemic inflammation. T2DM is linked with an increased risk of terrible difficulties, including cardiovascular disease, neuropathy, and nephropathy. The developing proofs suggest that natural compounds such as Ashwagandha (Withania somnifera) may have therapeutic potential due to their anti-inflammatory, antioxidant, and glucose-regulating properties. Ashwagandha is a traditional medicinal herb that is rich in withanolides and has demonstrated efficacy in previous studies; however, its comprehensive role in mitigating T2DM-related complications is underexplored. The current study seeks to assess the anti-inflammatory and antidiabetic effects of Ashwagandha in a high-fat diet (HFD) and low-dose streptozotocin (STZ)-induced T2DM mouse model. We have selected male C57BL/6 mice, which were allocated into four experimental groups, i.e. controls, STZ-induced diabetic controls, diabetic mice treated with Ashwagandha (200 mg/kg), and diabetic mice treated with metformin. The mice were treated for 8 weeks and then we assisted histological changes in pancreatic and hepatic tissues, with analysis of molecular markers of inflammation and glucose metabolism, and biochemical parameters such as blood glucose, insulin levels, lipid profiles, and oxidative stress markers. We have found a significant reduction in systemic inflammation, enhanced glucose tolerance, improved insulin sensitivity, and restored function of pancreatic β-cell. Furthermore, Ashwagandha treatment is predicted to relieve hepatic steatosis and adipose tissue inflammation by altering key oxidative stress and inflammatory pathways.

Ashwagandha (Withania somnifera)在2型糖尿病小鼠模型中的抗炎和抗糖尿病作用:一项使用组织学、分子和病理参数的研究
2型糖尿病(T2DM)是一种广泛的代谢性疾病,在全球范围内造成了严重的健康和经济问题。它的特点是慢性高血糖、胰岛素抵抗和全身炎症。2型糖尿病与严重困难的风险增加有关,包括心血管疾病、神经病变和肾病。不断发展的证据表明,Ashwagandha (Withania somnifera)等天然化合物可能具有治疗潜力,因为它们具有抗炎、抗氧化和调节血糖的特性。Ashwagandha是一种传统的草药,含有丰富的withanolides,在以前的研究中已经证明了它的功效;然而,其在减轻t2dm相关并发症中的综合作用尚未得到充分探讨。目前的研究旨在评估Ashwagandha在高脂肪饮食(HFD)和低剂量链脲佐菌素(STZ)诱导的T2DM小鼠模型中的抗炎和降糖作用。我们选择雄性C57BL/6小鼠,将其分为4个实验组,即对照组、stz诱导的糖尿病对照组、阿什wagandha (200 mg/kg)治疗的糖尿病小鼠和二甲双胍治疗的糖尿病小鼠。小鼠治疗8周后,我们辅助胰腺和肝脏组织的组织学变化,分析炎症和糖代谢的分子标记,以及血糖、胰岛素水平、脂质谱和氧化应激标记等生化参数。我们发现全身炎症显著减少,葡萄糖耐量增强,胰岛素敏感性改善,胰岛β细胞功能恢复。此外,预计Ashwagandha治疗可以通过改变关键的氧化应激和炎症途径来缓解肝脏脂肪变性和脂肪组织炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信