Optimal multi-objective energy management of decentralized demand response incorporating uncertainties.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-07-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0328838
Alireza Norouzpour Shahrbejari, Mohammad Hadi Eskandari Sani, Mehdi Zareian Jahromi, Elnaz Yaghoubi, Elaheh Yaghoubi, Mohammad Reza Maghami
{"title":"Optimal multi-objective energy management of decentralized demand response incorporating uncertainties.","authors":"Alireza Norouzpour Shahrbejari, Mohammad Hadi Eskandari Sani, Mehdi Zareian Jahromi, Elnaz Yaghoubi, Elaheh Yaghoubi, Mohammad Reza Maghami","doi":"10.1371/journal.pone.0328838","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a decentralized demand response (DR) framework that, incorporating optimal multi-objective energy management strategies, addresses uncertainties in power networks. The power industry faces challenges in operational optimization due to uncertainties in generation and consumption while evaluating environmental impacts and long-term economic implications. This research introduces an innovative approach by combining advanced DR techniques with a robust energy management strategy designed for uncertain conditions, enhanced by sensitivity analysis to key system parameters. The article considers a network with distributed generating resources, including wind turbines, microturbines, photovoltaics, energy storage systems (ESS), and diesel generators, where generation is controlled hourly based on load fluctuations. Energy consumption optimization requires not only distributed energy generation but also DR to variations in demand, ensuring system reliability under diverse scenarios. Consumers play a crucial role in optimizing energy usage through incentive-based participation. To achieve the research goal of reducing generation and purchasing costs in power grids through optimal energy management and DR to fluctuations, a stochastic approach is employed to obtain the best outcomes. This paper proposes a novel method for optimizing energy consumption in power networks by integrating stochastic techniques to manage uncertainties and variable conditions. The findings show improved network efficiency and cost reduction, achieving a 15.62% decrease in voltage deviation, 37.08% reduction in load demand, 62.05% decrease in active losses, 81.25% reduction in reactive losses, and 33-45% reduction in Expected Energy Not Supplied (EENS).</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0328838"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0328838","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a decentralized demand response (DR) framework that, incorporating optimal multi-objective energy management strategies, addresses uncertainties in power networks. The power industry faces challenges in operational optimization due to uncertainties in generation and consumption while evaluating environmental impacts and long-term economic implications. This research introduces an innovative approach by combining advanced DR techniques with a robust energy management strategy designed for uncertain conditions, enhanced by sensitivity analysis to key system parameters. The article considers a network with distributed generating resources, including wind turbines, microturbines, photovoltaics, energy storage systems (ESS), and diesel generators, where generation is controlled hourly based on load fluctuations. Energy consumption optimization requires not only distributed energy generation but also DR to variations in demand, ensuring system reliability under diverse scenarios. Consumers play a crucial role in optimizing energy usage through incentive-based participation. To achieve the research goal of reducing generation and purchasing costs in power grids through optimal energy management and DR to fluctuations, a stochastic approach is employed to obtain the best outcomes. This paper proposes a novel method for optimizing energy consumption in power networks by integrating stochastic techniques to manage uncertainties and variable conditions. The findings show improved network efficiency and cost reduction, achieving a 15.62% decrease in voltage deviation, 37.08% reduction in load demand, 62.05% decrease in active losses, 81.25% reduction in reactive losses, and 33-45% reduction in Expected Energy Not Supplied (EENS).

考虑不确定性的分散需求响应的最优多目标能量管理。
本文提出了一个分散的需求响应(DR)框架,该框架结合了最优多目标能源管理策略,解决了电网中的不确定性。由于发电和用电的不确定性,电力行业在评估环境影响和长期经济影响时,面临着运营优化方面的挑战。这项研究引入了一种创新的方法,将先进的DR技术与针对不确定条件设计的强大的能量管理策略相结合,通过对关键系统参数的敏感性分析来增强。本文考虑了一个分布式发电资源网络,包括风力涡轮机、微型涡轮机、光伏发电、储能系统(ESS)和柴油发电机,其中发电量根据负荷波动每小时进行控制。能耗优化不仅需要分布式发电,还需要对需求变化进行容灾,保证系统在不同场景下的可靠性。消费者通过激励参与,在优化能源使用方面发挥着至关重要的作用。为了实现通过最优能源管理和波动DR降低电网发电和购买成本的研究目标,采用随机方法获得最佳结果。本文提出了一种利用随机技术来管理不确定性和可变条件的电网能耗优化方法。结果表明,电网效率提高,成本降低,电压偏差降低15.62%,负荷需求降低37.08%,有功损耗降低62.05%,无功损耗降低81.25%,预期未供电(EENS)降低33-45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信