Mauro González Figueroa, Daniel David Herrera Acevedo, David Sierra Porta
{"title":"Geomagnetic disturbances and grid vulnerability: Correlating storm intensity with power system failures.","authors":"Mauro González Figueroa, Daniel David Herrera Acevedo, David Sierra Porta","doi":"10.1371/journal.pone.0327716","DOIUrl":null,"url":null,"abstract":"<p><p>Geomagnetic storms represent a critical yet sometimes overlooked factor affecting the reliability of modern power systems. This study examines the relationship between geomagnetic storm activity-characterized by the Dst index and categorized into weak, moderate, strong, severe, and extreme intensities-and reported power outages of unknown or unusual origin in the United States from 2006 to 2023. Outage data come from the DOE OE-417 Annual Summaries, while heliospheric and solar wind parameters (including proton density, plasma speed, and the interplanetary magnetic field) were obtained from NASA's OMNIWeb database. Results indicate that years with a higher total count of geomagnetic storms, especially those featuring multiple strong or severe events, exhibit elevated incidences of unexplained power interruptions. Correlation analyses further reveal that increasingly negative Dst values, enhanced solar wind velocity, and higher alpha/proton ratios align with greater numbers of outages attributed to unknown causes, underscoring the pivotal role of solar wind-magnetosphere coupling. A simple regression model confirms that storm intensity and average magnetic field strength are statistically significant predictors of unexplained outages, more so than broad indicators such as sunspot number alone. These findings highlight the importance of monitoring high-intensity geomagnetic storms and associated heliospheric variables to mitigate potential risks. Greater attention to space weather impacts and improved reporting of outage causes could bolster grid resilience, helping operators anticipate and manage disruptions linked to geomagnetic disturbances.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0327716"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0327716","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Geomagnetic storms represent a critical yet sometimes overlooked factor affecting the reliability of modern power systems. This study examines the relationship between geomagnetic storm activity-characterized by the Dst index and categorized into weak, moderate, strong, severe, and extreme intensities-and reported power outages of unknown or unusual origin in the United States from 2006 to 2023. Outage data come from the DOE OE-417 Annual Summaries, while heliospheric and solar wind parameters (including proton density, plasma speed, and the interplanetary magnetic field) were obtained from NASA's OMNIWeb database. Results indicate that years with a higher total count of geomagnetic storms, especially those featuring multiple strong or severe events, exhibit elevated incidences of unexplained power interruptions. Correlation analyses further reveal that increasingly negative Dst values, enhanced solar wind velocity, and higher alpha/proton ratios align with greater numbers of outages attributed to unknown causes, underscoring the pivotal role of solar wind-magnetosphere coupling. A simple regression model confirms that storm intensity and average magnetic field strength are statistically significant predictors of unexplained outages, more so than broad indicators such as sunspot number alone. These findings highlight the importance of monitoring high-intensity geomagnetic storms and associated heliospheric variables to mitigate potential risks. Greater attention to space weather impacts and improved reporting of outage causes could bolster grid resilience, helping operators anticipate and manage disruptions linked to geomagnetic disturbances.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage