{"title":"Exploring Core Genes Involved in Ischemic Stroke and the Therapeutic Potential of Hyperbaric Oxygen: Insights from Transcriptomic Analysis.","authors":"Yingcun Bao, Xudong Guo, Jinhai Wang, Jihe Kang, Rui Ma, Xiaorong Cheng, Yumei Ma, Yanxia Niu, Wei Zhang, Xiaoling Li","doi":"10.1007/s12017-025-08876-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke (IS) is a complex neurological disorder caused by reduced cerebral blood flow, typically resulting in tissue damage due to hypoxia and nutrient deficiency. Hyperbaric oxygen therapy (HBOT) has shown great potential as an adjunctive treatment for IS, though its mechanisms of action are not fully understood. This study employed a middle cerebral artery occlusion (MCAO) mouse model to explore the molecular mechanisms and therapeutic effects of HBOT. Transcriptomic analysis revealed significant changes in gene expression related to ischemia, including differentially expressed genes (DEGs) involved in inflammatory responses, BBB damage, and neural repair, such as Lcn2, Bcl3, Olr1, Pdpn, Gpnmb, and Gfap. HBOT significantly reduced brain damage, modulated the expression of these key genes, and decreased m<sup>6</sup>A methylation levels, thereby affecting post-transcriptional modifications of RNA. These findings provide new insights into the molecular mechanisms of IS and the development of precise treatment strategies, highlighting the potential of HBOT to reduce brain damage and promote neural repair at the molecular level.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"54"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08876-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke (IS) is a complex neurological disorder caused by reduced cerebral blood flow, typically resulting in tissue damage due to hypoxia and nutrient deficiency. Hyperbaric oxygen therapy (HBOT) has shown great potential as an adjunctive treatment for IS, though its mechanisms of action are not fully understood. This study employed a middle cerebral artery occlusion (MCAO) mouse model to explore the molecular mechanisms and therapeutic effects of HBOT. Transcriptomic analysis revealed significant changes in gene expression related to ischemia, including differentially expressed genes (DEGs) involved in inflammatory responses, BBB damage, and neural repair, such as Lcn2, Bcl3, Olr1, Pdpn, Gpnmb, and Gfap. HBOT significantly reduced brain damage, modulated the expression of these key genes, and decreased m6A methylation levels, thereby affecting post-transcriptional modifications of RNA. These findings provide new insights into the molecular mechanisms of IS and the development of precise treatment strategies, highlighting the potential of HBOT to reduce brain damage and promote neural repair at the molecular level.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.