Luis Enrique Sastré-Velásquez, Natalia Mach, Birte Mertens, Alexander Kühbacher, Petra Merschak, Alex Dallemulle, Lukas Lechner, Clara Baldin, George Diallinas, Fabio Gsaller
{"title":"Simultaneous multigene integration in Aspergillus fumigatus using CRISPR/Cas9 and endogenous counter-selectable markers.","authors":"Luis Enrique Sastré-Velásquez, Natalia Mach, Birte Mertens, Alexander Kühbacher, Petra Merschak, Alex Dallemulle, Lukas Lechner, Clara Baldin, George Diallinas, Fabio Gsaller","doi":"10.1186/s13036-025-00539-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The discovery of CRISPR/Cas9 and its subsequent accessibility in daily research initiated a new era in genome editing. This game-changing genetic instrument enabled a vast array of challenging applications requiring site-specific genome engineering as well as applications involving the equipment of cells with additional genetic traits. Despite the undisputed benefits of this technology, for facile and efficient selection of successfully manipulated cells selectable markers remain indispensable. Over the past years endogenous counter-selectable markers have come into focus in antifungal research enabling site-directed integration of multiple genes into the genome of the human mold pathogen Aspergillus fumigatus. However, gene cassettes had to be transformed in a consecutive manner keeping multigene integrations laborious and time-consuming.</p><p><strong>Results: </strong>In this work, we coupled the use of CRISPR/Cas9 with endogenous counter-selectable markers to achieve the simultaneous integration of multiple expression cassettes. The three markers used in this work included the herein employed azgA and the previously identified fcyB and cntA, responsible for 8-azaguanine, 5-fluorocytosine and 5-fluorouridine uptake, respectively. Exploiting their role in uptake of different selective agents, a triple selective transformation procedure and genomic integration of three expression cassettes in A. fumigatus was successfully accomplished. In addition to three distinct cellular reporters, we introduced strain-specific fluorescent reporters into four isolates displaying different levels of antifungal azole resistance to subsequently visualize and monitor their growth patterns in the same growth environment.</p><p><strong>Conclusions: </strong>The technology described in this study significantly streamlines the genetic manipulation process, reducing both time and labor associated with sequential transformations. By enabling the introduction of multiple genetic traits in a single transformation event, this strategy provides a flexible and efficient platform for a wide range of applications. As such, it enhances the potential for rapid and effective multigene integration, advancing the field of genetic engineering in fungi.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"69"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00539-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The discovery of CRISPR/Cas9 and its subsequent accessibility in daily research initiated a new era in genome editing. This game-changing genetic instrument enabled a vast array of challenging applications requiring site-specific genome engineering as well as applications involving the equipment of cells with additional genetic traits. Despite the undisputed benefits of this technology, for facile and efficient selection of successfully manipulated cells selectable markers remain indispensable. Over the past years endogenous counter-selectable markers have come into focus in antifungal research enabling site-directed integration of multiple genes into the genome of the human mold pathogen Aspergillus fumigatus. However, gene cassettes had to be transformed in a consecutive manner keeping multigene integrations laborious and time-consuming.
Results: In this work, we coupled the use of CRISPR/Cas9 with endogenous counter-selectable markers to achieve the simultaneous integration of multiple expression cassettes. The three markers used in this work included the herein employed azgA and the previously identified fcyB and cntA, responsible for 8-azaguanine, 5-fluorocytosine and 5-fluorouridine uptake, respectively. Exploiting their role in uptake of different selective agents, a triple selective transformation procedure and genomic integration of three expression cassettes in A. fumigatus was successfully accomplished. In addition to three distinct cellular reporters, we introduced strain-specific fluorescent reporters into four isolates displaying different levels of antifungal azole resistance to subsequently visualize and monitor their growth patterns in the same growth environment.
Conclusions: The technology described in this study significantly streamlines the genetic manipulation process, reducing both time and labor associated with sequential transformations. By enabling the introduction of multiple genetic traits in a single transformation event, this strategy provides a flexible and efficient platform for a wide range of applications. As such, it enhances the potential for rapid and effective multigene integration, advancing the field of genetic engineering in fungi.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.