Enhancing central visual field loss representation with a hybrid unsupervised approach.

IF 1.4 4区 医学 Q3 OPHTHALMOLOGY
Seungtae Yoo, Sang Wook Jin, Jung Lim Kim, Jonghoon Shin, Seung Uk Lee, EunAh Kim, Jiwon Lee, Giltae Song, Jiwoong Lee
{"title":"Enhancing central visual field loss representation with a hybrid unsupervised approach.","authors":"Seungtae Yoo, Sang Wook Jin, Jung Lim Kim, Jonghoon Shin, Seung Uk Lee, EunAh Kim, Jiwon Lee, Giltae Song, Jiwoong Lee","doi":"10.1007/s10792-025-03672-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To effectively represent central visual field (VF) loss for individual patients using a hybrid unsupervised approach.</p><p><strong>Methods: </strong>We obtained 7927 10-2 VF test data from 3328 patients in 5 hospitals. We propose a hybrid approach that combines archetypal analysis (AA) and fuzzy c-means (FCM) to identify characteristic patterns and decompose 10-2 VF without loss. To compare the performance between hybrid approach using FCM and AA single approach, mean deviation (MD) change prediction was performed through supervised learning using decomposition coefficient changes and a linear mixed-effects model was built to investigate the relationship between the MD slope and baseline decomposition coefficients.</p><p><strong>Results: </strong>We identified 10 representative archetypes for 10-2 VF test. The hybrid approach using FCM outperformed the AA single approach in predicting MD change, achieving lower mean squared error and higher pearson correlation coefficient (all P ≤ 0.039). According to the linear mixed-effects model, the hybrid approach using FCM provides a better fit for predicting MD slope compared to the AA single approach, as reflected by lower akaike information criterion (AIC) and bayesian information criterion (BIC) scores (AIC decrease: 20.31, BIC decrease: 13.33). Eyes with baseline VFs with more inferior and both hemifield loss and less intact field and nearly total loss were associated with faster central VF progression (all P ≤ 0.026).</p><p><strong>Conclusion: </strong>A hybrid approach combining AA and FCM to analyze 10-2 VF can visualize central VF tests in characteristic patterns and enhance prediction of central VF progression with minimized projection loss decomposition compared with AA single approach.</p>","PeriodicalId":14473,"journal":{"name":"International Ophthalmology","volume":"45 1","pages":"317"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10792-025-03672-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To effectively represent central visual field (VF) loss for individual patients using a hybrid unsupervised approach.

Methods: We obtained 7927 10-2 VF test data from 3328 patients in 5 hospitals. We propose a hybrid approach that combines archetypal analysis (AA) and fuzzy c-means (FCM) to identify characteristic patterns and decompose 10-2 VF without loss. To compare the performance between hybrid approach using FCM and AA single approach, mean deviation (MD) change prediction was performed through supervised learning using decomposition coefficient changes and a linear mixed-effects model was built to investigate the relationship between the MD slope and baseline decomposition coefficients.

Results: We identified 10 representative archetypes for 10-2 VF test. The hybrid approach using FCM outperformed the AA single approach in predicting MD change, achieving lower mean squared error and higher pearson correlation coefficient (all P ≤ 0.039). According to the linear mixed-effects model, the hybrid approach using FCM provides a better fit for predicting MD slope compared to the AA single approach, as reflected by lower akaike information criterion (AIC) and bayesian information criterion (BIC) scores (AIC decrease: 20.31, BIC decrease: 13.33). Eyes with baseline VFs with more inferior and both hemifield loss and less intact field and nearly total loss were associated with faster central VF progression (all P ≤ 0.026).

Conclusion: A hybrid approach combining AA and FCM to analyze 10-2 VF can visualize central VF tests in characteristic patterns and enhance prediction of central VF progression with minimized projection loss decomposition compared with AA single approach.

用混合无监督方法增强中央视野损失表征。
目的:使用混合无监督方法有效地代表单个患者的中央视野(VF)损失。方法:对5家医院3328例患者进行7927例10-2 VF检测。我们提出了一种结合原型分析(AA)和模糊c均值(FCM)的混合方法来识别特征模式并无损失地分解10-2 VF。为了比较使用FCM的混合方法与AA单一方法的性能,通过分解系数变化的监督学习进行平均偏差(MD)变化预测,并建立线性混合效应模型研究MD斜率与基线分解系数之间的关系。结果:我们确定了10个具有代表性的10-2 VF原型。使用FCM的混合方法在预测MD变化方面优于AA单一方法,均方误差更小,pearson相关系数更高(均P≤0.039)。根据线性混合效应模型,与AA单一方法相比,FCM混合方法预测MD斜率的拟合效果更好,体现在akaike信息准则(AIC)和bayesian信息准则(BIC)得分较低(AIC降低20.31,BIC降低13.33)。基线VF较差、半视野丧失、完整视野较少和几乎全视野丧失的眼睛与中央VF进展更快相关(均P≤0.026)。结论:结合AA和FCM的混合方法分析10-2 VF,与AA单一方法相比,可以以特征模式显示中央VF测试,并以最小的投影损失分解增强中央VF进展的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
451
期刊介绍: International Ophthalmology provides the clinician with articles on all the relevant subspecialties of ophthalmology, with a broad international scope. The emphasis is on presentation of the latest clinical research in the field. In addition, the journal includes regular sections devoted to new developments in technologies, products, and techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信