Xin-Qiao Du, Tian-Xiao Sun, Wu-Lin Xu, Tang Zhu, Qiang Wang, Pei-Wen Gu, Jiang Lu
{"title":"Multi-omics analysis reveals the specific role of biocontrol reagents against tomato bacterial wilt.","authors":"Xin-Qiao Du, Tian-Xiao Sun, Wu-Lin Xu, Tang Zhu, Qiang Wang, Pei-Wen Gu, Jiang Lu","doi":"10.3389/fpls.2025.1620460","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial wilt caused by <i>Ralstonia solanacearum</i> is considered one of the most important diseases that cause economic losses to tomato. Currently, eco-friendly biocontrol agents have been increasingly considered as effective approaches to control tomato bacterial wilt. However, the specific mechanisms by which biocontrol bacteria with distinct functions exert their effects remain unclear. In this study, we employed a combination of amplicon sequencing, transcriptomics, and metabolomics analysis to investigate how <i>Bacillus velezensis</i> and <i>Pseudomonas fluorescens</i> affect the defense responses against <i>R. solanacearum</i> in tomato. We showed that the fermentation broth of these biocontrol agents inhibited the growth of <i>R. solanacearum in vitro</i>, and improves the ability of tomato plants against bacterial wilt. In general, different biocontrol agents protect plants from bacterial wilt in many ways, by recruiting specific microbial communities in rhizosphere soil and activating different synthetic/metabolic and signaling pathways. Collectively, our findings contribute to a more in-depth understanding in disease resistance mechanisms of biocontrol agents, and provide a theoretical foundation for the development of targeted strategies using beneficial microorganisms to suppress disease occurrence.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1620460"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1620460","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial wilt caused by Ralstonia solanacearum is considered one of the most important diseases that cause economic losses to tomato. Currently, eco-friendly biocontrol agents have been increasingly considered as effective approaches to control tomato bacterial wilt. However, the specific mechanisms by which biocontrol bacteria with distinct functions exert their effects remain unclear. In this study, we employed a combination of amplicon sequencing, transcriptomics, and metabolomics analysis to investigate how Bacillus velezensis and Pseudomonas fluorescens affect the defense responses against R. solanacearum in tomato. We showed that the fermentation broth of these biocontrol agents inhibited the growth of R. solanacearum in vitro, and improves the ability of tomato plants against bacterial wilt. In general, different biocontrol agents protect plants from bacterial wilt in many ways, by recruiting specific microbial communities in rhizosphere soil and activating different synthetic/metabolic and signaling pathways. Collectively, our findings contribute to a more in-depth understanding in disease resistance mechanisms of biocontrol agents, and provide a theoretical foundation for the development of targeted strategies using beneficial microorganisms to suppress disease occurrence.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.