{"title":"Robust Fractional Low Order Adaptive Linear Chirplet Transform and Its Application to Fault Analysis.","authors":"Junbo Long, Changshou Deng, Haibin Wang, Youxue Zhou","doi":"10.3390/e27070742","DOIUrl":null,"url":null,"abstract":"<p><p>Time-frequency analysis (TFA) technology is an important tool for analyzing non-Gaussian mechanical fault vibration signals. In the complex background of infinite variance process noise and Gaussian colored noise, it is difficult for traditional methods to obtain the highly concentrated time-frequency representation (TFR) of fault vibration signals. Based on the insensitive property of fractional low-order statistics for infinite variance and Gaussian processes, robust fractional lower order adaptive linear chirplet transform (FLOACT) and fractional lower order adaptive scaling chirplet transform (FLOASCT) methods are proposed to suppress the mixed complex noise in this paper. The calculation steps and processes of the algorithms are summarized and deduced in detail. The experimental simulation results show that the improved FLOACT and FLOASCT methods have good effects on multi-component signals with short frequency intervals in the time-frequency domain and even cross-frequency trajectories in the strong impulse background noise environment. Finally, the proposed methods are applied to the feature analysis and extraction of the mechanical outer race fault vibration signals in complex background environments, and the results show that they have good estimation accuracy and effectiveness in lower MSNR, which indicate their robustness and adaptability.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27070742","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Time-frequency analysis (TFA) technology is an important tool for analyzing non-Gaussian mechanical fault vibration signals. In the complex background of infinite variance process noise and Gaussian colored noise, it is difficult for traditional methods to obtain the highly concentrated time-frequency representation (TFR) of fault vibration signals. Based on the insensitive property of fractional low-order statistics for infinite variance and Gaussian processes, robust fractional lower order adaptive linear chirplet transform (FLOACT) and fractional lower order adaptive scaling chirplet transform (FLOASCT) methods are proposed to suppress the mixed complex noise in this paper. The calculation steps and processes of the algorithms are summarized and deduced in detail. The experimental simulation results show that the improved FLOACT and FLOASCT methods have good effects on multi-component signals with short frequency intervals in the time-frequency domain and even cross-frequency trajectories in the strong impulse background noise environment. Finally, the proposed methods are applied to the feature analysis and extraction of the mechanical outer race fault vibration signals in complex background environments, and the results show that they have good estimation accuracy and effectiveness in lower MSNR, which indicate their robustness and adaptability.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.