{"title":"Quantification and Evolution of Online Public Opinion Heat Considering Interactive Behavior and Emotional Conflict.","authors":"Zhengyi Sun, Deyao Wang, Zhaohui Li","doi":"10.3390/e27070701","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the Internet, the speed and scope of sudden public events disseminating in cyberspace have grown significantly. Current methods of quantifying public opinion heat often neglect emotion-driven factors and user interaction behaviors, making it difficult to accurately capture fluctuations during dissemination. To address these issues, first, this study addressed the complexity of interaction behaviors by introducing an approach that employs the information gain ratio as a weighting indicator to measure the \"interaction heat\" contributed by different interaction attributes during event evolution. Second, this study built on SnowNLP and expanded textual features to conduct in-depth sentiment mining of large-scale opinion texts, defining the variance of netizens' emotional tendencies as an indicator of emotional fluctuations, thereby capturing \"emotional heat\". We then integrated interactive behavior and emotional conflict assessment to achieve comprehensive heat index to quantification and dynamic evolution analysis of online public opinion heat. Subsequently, we used Hodrick-Prescott filter to separate long-term trends and short-term fluctuations, extract six key quantitative features (number of peaks, time of first peak, maximum amplitude, decay time, peak emotional conflict, and overall duration), and applied K-means clustering algorithm (K-means) to classify events into three propagation patterns, which are extreme burst, normal burst, and long-tail. Finally, this study conducted ablation experiments on critical external intervention nodes to quantify the distinct contribution of each intervention to the propagation trend by observing changes in the model's goodness-of-fit (R2) after removing different interventions. Through an empirical analysis of six representative public opinion events from 2024, this study verified the effectiveness of the proposed framework and uncovered critical characteristics of opinion dissemination, including explosiveness versus persistence, multi-round dissemination with recurring emotional fluctuations, and the interplay of multiple driving factors.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27070701","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the Internet, the speed and scope of sudden public events disseminating in cyberspace have grown significantly. Current methods of quantifying public opinion heat often neglect emotion-driven factors and user interaction behaviors, making it difficult to accurately capture fluctuations during dissemination. To address these issues, first, this study addressed the complexity of interaction behaviors by introducing an approach that employs the information gain ratio as a weighting indicator to measure the "interaction heat" contributed by different interaction attributes during event evolution. Second, this study built on SnowNLP and expanded textual features to conduct in-depth sentiment mining of large-scale opinion texts, defining the variance of netizens' emotional tendencies as an indicator of emotional fluctuations, thereby capturing "emotional heat". We then integrated interactive behavior and emotional conflict assessment to achieve comprehensive heat index to quantification and dynamic evolution analysis of online public opinion heat. Subsequently, we used Hodrick-Prescott filter to separate long-term trends and short-term fluctuations, extract six key quantitative features (number of peaks, time of first peak, maximum amplitude, decay time, peak emotional conflict, and overall duration), and applied K-means clustering algorithm (K-means) to classify events into three propagation patterns, which are extreme burst, normal burst, and long-tail. Finally, this study conducted ablation experiments on critical external intervention nodes to quantify the distinct contribution of each intervention to the propagation trend by observing changes in the model's goodness-of-fit (R2) after removing different interventions. Through an empirical analysis of six representative public opinion events from 2024, this study verified the effectiveness of the proposed framework and uncovered critical characteristics of opinion dissemination, including explosiveness versus persistence, multi-round dissemination with recurring emotional fluctuations, and the interplay of multiple driving factors.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.