{"title":"Recent progress in 2D, 3D, and on-a-chip models of the placenta.","authors":"Alexandra M Harrison, Christina M Bailey-Hytholt","doi":"10.1159/000547560","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The placenta is a temporary organ that develops throughout pregnancy, connecting a developing fetus to the maternal uterine wall. The placenta's structure is species specific and complex, resulting in recent advancements with in vitro models to help study this dynamic organ. The main cell type composing the placenta, trophoblast cells, serve several roles and have been incorporated within biomaterials and devices to recapitulate the placental microenvironment.</p><p><strong>Summary: </strong>This review highlights in vitro 2D, 3D, and on-a-chip models of two placental interfaces: the interface between the endometrium and extravillous trophoblast cells and the interface between the chorionic villi and intervillous space. First, an overview of placental cell types and in vitro model types used in the discussed studies is provided. Next, models of invasive trophoblasts cells at the endometrium where the placenta is anchored and the spiral arteries are remodeled are discussed. Next, the review highlights models of the chorionic villi and intervillous space, an interface where cytotrophoblast cells fuse into syncytiotrophoblasts. Finally, we discuss key takeaways and future directions in creating representative placental models.</p><p><strong>Key messages: </strong>The combination of biomaterial and engineering approaches has led to the development of physiologically relevant models, allowing placental trophoblast functions to be investigated with more clarity. Each cell type (e.g. trophoblast cell line vs. stem cells vs. primary placental cells) and biomaterial system (e.g. organoid vs. on-a-chip) that is selected for a given model has a unique combination of advantages and limitations, which are detailed within this review. Overall, the placental models discussed enable trophoblast cell behavior to be studied in vitro with the inclusion of extracellular matrix materials, growth factors, and other environmental cues. While one model alone does not fully recapitulate every function of the placenta, individual models are tailored to inform on specific placental trophoblast behaviors.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-50"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000547560","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The placenta is a temporary organ that develops throughout pregnancy, connecting a developing fetus to the maternal uterine wall. The placenta's structure is species specific and complex, resulting in recent advancements with in vitro models to help study this dynamic organ. The main cell type composing the placenta, trophoblast cells, serve several roles and have been incorporated within biomaterials and devices to recapitulate the placental microenvironment.
Summary: This review highlights in vitro 2D, 3D, and on-a-chip models of two placental interfaces: the interface between the endometrium and extravillous trophoblast cells and the interface between the chorionic villi and intervillous space. First, an overview of placental cell types and in vitro model types used in the discussed studies is provided. Next, models of invasive trophoblasts cells at the endometrium where the placenta is anchored and the spiral arteries are remodeled are discussed. Next, the review highlights models of the chorionic villi and intervillous space, an interface where cytotrophoblast cells fuse into syncytiotrophoblasts. Finally, we discuss key takeaways and future directions in creating representative placental models.
Key messages: The combination of biomaterial and engineering approaches has led to the development of physiologically relevant models, allowing placental trophoblast functions to be investigated with more clarity. Each cell type (e.g. trophoblast cell line vs. stem cells vs. primary placental cells) and biomaterial system (e.g. organoid vs. on-a-chip) that is selected for a given model has a unique combination of advantages and limitations, which are detailed within this review. Overall, the placental models discussed enable trophoblast cell behavior to be studied in vitro with the inclusion of extracellular matrix materials, growth factors, and other environmental cues. While one model alone does not fully recapitulate every function of the placenta, individual models are tailored to inform on specific placental trophoblast behaviors.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.