{"title":"Presenilin-1 Familial Alzheimer Mutations Impair γ-Secretase Cleavage of APP Through Stabilized Enzyme-Substrate Complex Formation.","authors":"Sujan Devkota, Masato Maesako, Michael S Wolfe","doi":"10.3390/biom15070955","DOIUrl":null,"url":null,"abstract":"<p><p>Familial Alzheimer's disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone Aβ42 relative to Aβ40, consistent with the amyloid hypothesis of Alzheimer pathogenesis, some mutations do not increase this ratio. The γ-secretase complex produces amyloid β-peptide (Aβ) through processive cleavage along two pathways: C99 → Aβ49 → Aβ46 → Aβ43 → Aβ40 and C99 → Aβ48 → Aβ45 → Aβ42 → Aβ38. Understanding how FAD mutations affect the multistep γ-secretase cleavage process is critical for elucidating disease pathogenesis. In a recent study, we discovered that FAD mutations lead to stalled γ-secretase/substrate complexes that trigger synaptic loss independently of Aβ production. Here, we further investigate this \"stalled complex\" hypothesis, focusing on five additional PSEN1 FAD mutations (M84V, C92S, Y115H, T116I, and M139V). A comprehensive biochemical analysis revealed that all five mutations led to substantially reduced initial proteolysis of C99 to Aβ49 or Aβ48 as well as deficiencies in one or more subsequent trimming steps. Results from fluorescence lifetime imaging microscopy support increased stabilization of enzyme-substrate complexes by all five FAD mutations. These findings provide further support for the stalled complex hypothesis, highlighting that FAD mutations impair γ-secretase function by promoting the accumulation of stalled enzyme-substrate complexes.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 7","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15070955","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Familial Alzheimer's disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone Aβ42 relative to Aβ40, consistent with the amyloid hypothesis of Alzheimer pathogenesis, some mutations do not increase this ratio. The γ-secretase complex produces amyloid β-peptide (Aβ) through processive cleavage along two pathways: C99 → Aβ49 → Aβ46 → Aβ43 → Aβ40 and C99 → Aβ48 → Aβ45 → Aβ42 → Aβ38. Understanding how FAD mutations affect the multistep γ-secretase cleavage process is critical for elucidating disease pathogenesis. In a recent study, we discovered that FAD mutations lead to stalled γ-secretase/substrate complexes that trigger synaptic loss independently of Aβ production. Here, we further investigate this "stalled complex" hypothesis, focusing on five additional PSEN1 FAD mutations (M84V, C92S, Y115H, T116I, and M139V). A comprehensive biochemical analysis revealed that all five mutations led to substantially reduced initial proteolysis of C99 to Aβ49 or Aβ48 as well as deficiencies in one or more subsequent trimming steps. Results from fluorescence lifetime imaging microscopy support increased stabilization of enzyme-substrate complexes by all five FAD mutations. These findings provide further support for the stalled complex hypothesis, highlighting that FAD mutations impair γ-secretase function by promoting the accumulation of stalled enzyme-substrate complexes.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.