Maissa Trabilsy, Srinivasagam Prabha, Cesar A Gomez-Cabello, Syed Ali Haider, Ariana Genovese, Sahar Borna, Nadia Wood, Narayanan Gopala, Cui Tao, Antonio J Forte
{"title":"The PIEE Cycle: A Structured Framework for Red Teaming Large Language Models in Clinical Decision-Making.","authors":"Maissa Trabilsy, Srinivasagam Prabha, Cesar A Gomez-Cabello, Syed Ali Haider, Ariana Genovese, Sahar Borna, Nadia Wood, Narayanan Gopala, Cui Tao, Antonio J Forte","doi":"10.3390/bioengineering12070706","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing integration of large language models (LLMs) into healthcare presents significant opportunities, but also critical risks related to patient safety, accuracy, and ethical alignment. Despite these concerns, no standardized framework exists for systematically evaluating and stress testing LLM behavior in clinical decision-making. The PIEE cycle-Planning and Preparation, Information Gathering and Prompt Generation, Execution, and Evaluation-is a structured red-teaming framework developed specifically to address artificial intelligence (AI) safety risks in healthcare decision-making. PIEE enables clinicians and informatics teams to simulate adversarial prompts, including jailbreaking, social engineering, and distractor attacks, to stress-test language models in real-world clinical scenarios. Model performance is evaluated using specific metrics such as true positive and false positive rates for detecting harmful content, hallucination rates measured through adapted TruthfulQA scoring, safety and reliability assessments, bias detection via adapted BBQ benchmarks, and ethical evaluation using structured Likert-based scoring rubrics. The framework is illustrated using examples from plastic surgery, but is adaptable across specialties, and is intended for use by all medical providers, regardless of their backgrounds or familiarity with artificial intelligence. While the framework is currently conceptual and validation is ongoing, PIEE provides a practical foundation for assessing the clinical reliability and ethical robustness of LLMs in medicine.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12070706","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing integration of large language models (LLMs) into healthcare presents significant opportunities, but also critical risks related to patient safety, accuracy, and ethical alignment. Despite these concerns, no standardized framework exists for systematically evaluating and stress testing LLM behavior in clinical decision-making. The PIEE cycle-Planning and Preparation, Information Gathering and Prompt Generation, Execution, and Evaluation-is a structured red-teaming framework developed specifically to address artificial intelligence (AI) safety risks in healthcare decision-making. PIEE enables clinicians and informatics teams to simulate adversarial prompts, including jailbreaking, social engineering, and distractor attacks, to stress-test language models in real-world clinical scenarios. Model performance is evaluated using specific metrics such as true positive and false positive rates for detecting harmful content, hallucination rates measured through adapted TruthfulQA scoring, safety and reliability assessments, bias detection via adapted BBQ benchmarks, and ethical evaluation using structured Likert-based scoring rubrics. The framework is illustrated using examples from plastic surgery, but is adaptable across specialties, and is intended for use by all medical providers, regardless of their backgrounds or familiarity with artificial intelligence. While the framework is currently conceptual and validation is ongoing, PIEE provides a practical foundation for assessing the clinical reliability and ethical robustness of LLMs in medicine.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering