Design and Bench Testing of a Novel, Pediatric, Non-Invasive, Bubble Bilevel Positive Pressure Ventilation Device.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ibukun Sonaike, Robert M DiBlasi, Jonathan Arthur Poli, Andrew Vamos, Ofer Yanay, Amelie von Saint Andre-von Arnim
{"title":"Design and Bench Testing of a Novel, Pediatric, Non-Invasive, Bubble Bilevel Positive Pressure Ventilation Device.","authors":"Ibukun Sonaike, Robert M DiBlasi, Jonathan Arthur Poli, Andrew Vamos, Ofer Yanay, Amelie von Saint Andre-von Arnim","doi":"10.3390/bioengineering12070697","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lower respiratory tract infections are a leading cause of death in individuals under the age of 5 years, mostly in low- and middle-income countries (LMICs). The lack of respiratory support systems contributes to the poor outcomes. Bubble CPAP is widely used for non-invasive respiratory support, but sicker children often require support over what CPAP provides in the form of BiPAP. We developed and tested a simple bubble-based bilevel ventilator (Bubble bi-vent) and compared it with a standard care BiPAP device. The bubble bilevel device consisted of a single tube submerged in a water-sealed column to maintain end-expiratory positive airway pressure. It moves vertically via an electric motor to also provide inspiratory positive airway pressure for augmentation of lung volumes, with the duration and frequency of breaths controlled by a microprocessor. We tested this novel device in passively breathing mechanical lung models for infants and small children. We compared pressure and tidal volume delivery between the novel device and a Trilogy BiPAP ventilator. The results showed that the Bubble bi-vent could deliver set pressures in a mechanical lung and was comparable to a standard Trilogy ventilator. While two different bubble-based bilevel pressure devices have been piloted for neonates and adults, our results demonstrate the feasibility of bubble bilevel ventilation for infants and small children with moderate to severe lung disease for whom this was previously not described.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12070697","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lower respiratory tract infections are a leading cause of death in individuals under the age of 5 years, mostly in low- and middle-income countries (LMICs). The lack of respiratory support systems contributes to the poor outcomes. Bubble CPAP is widely used for non-invasive respiratory support, but sicker children often require support over what CPAP provides in the form of BiPAP. We developed and tested a simple bubble-based bilevel ventilator (Bubble bi-vent) and compared it with a standard care BiPAP device. The bubble bilevel device consisted of a single tube submerged in a water-sealed column to maintain end-expiratory positive airway pressure. It moves vertically via an electric motor to also provide inspiratory positive airway pressure for augmentation of lung volumes, with the duration and frequency of breaths controlled by a microprocessor. We tested this novel device in passively breathing mechanical lung models for infants and small children. We compared pressure and tidal volume delivery between the novel device and a Trilogy BiPAP ventilator. The results showed that the Bubble bi-vent could deliver set pressures in a mechanical lung and was comparable to a standard Trilogy ventilator. While two different bubble-based bilevel pressure devices have been piloted for neonates and adults, our results demonstrate the feasibility of bubble bilevel ventilation for infants and small children with moderate to severe lung disease for whom this was previously not described.

一种新型儿科无创气泡双层正压通气装置的设计与台架试验。
急性下呼吸道感染是5岁以下儿童死亡的主要原因,主要发生在低收入和中等收入国家。缺乏呼吸支持系统是导致不良结果的原因之一。气泡CPAP广泛用于无创呼吸支持,但病情较重的儿童通常需要比CPAP以BiPAP形式提供的支持。我们开发并测试了一种简单的气泡双层呼吸机(Bubble bi-vent),并将其与标准护理BiPAP设备进行了比较。气泡双层装置由一根浸入水封柱的单管组成,以维持呼气末气道正压。它通过一个电动马达垂直移动,也提供吸气气道正压,以增加肺容量,呼吸的持续时间和频率由微处理器控制。我们在婴幼儿被动呼吸机械肺模型中测试了这种新型装置。我们比较了新型设备和三部曲BiPAP呼吸机之间的压力和潮汐气量输送。结果表明,Bubble双通气孔可以在机械肺中提供设定压力,与标准的Trilogy呼吸机相当。虽然两种不同的基于气泡的双级压力装置已经在新生儿和成人中进行了试验,但我们的研究结果表明,对于患有中度至重度肺部疾病的婴儿和幼儿,气泡双级通气是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信