Madjda Khedimi, Tao Zhang, Chaima Dehmani, Xin Zhao, Yanzhang Geng
{"title":"A Unified Deep Learning Ensemble Framework for Voice-Based Parkinson's Disease Detection and Motor Severity Prediction.","authors":"Madjda Khedimi, Tao Zhang, Chaima Dehmani, Xin Zhao, Yanzhang Geng","doi":"10.3390/bioengineering12070699","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a hybrid ensemble learning framework for the joint detection and motor severity prediction of Parkinson's disease (PD) using biomedical voice features. The proposed architecture integrates a deep multimodal fusion model with dense expert pathways, multi-head self-attention, and multitask output branches to simultaneously perform binary classification and regression. To ensure data quality and improve model generalization, preprocessing steps included outlier removal via Isolation Forest, two-stage feature scaling (RobustScaler followed by MinMaxScaler), and augmentation through polynomial and interaction terms. Borderline-SMOTE was employed to address class imbalance in the classification task. To enhance prediction performance, ensemble learning strategies were applied by stacking outputs from the fusion model with tree-based regressors (Random Forest, Gradient Boosting, and XGBoost), using diverse meta-learners including XGBoost, Ridge Regression, and a deep neural network. Among these, the Stacking Ensemble with XGBoost (SE-XGB) achieved the best results, with an R<sup>2</sup> of 99.78% and RMSE of 0.3802 for UPDRS regression and 99.37% accuracy for PD classification. Comparative analysis with recent literature highlights the superior performance of our framework, particularly in regression settings. These findings demonstrate the effectiveness of combining advanced feature engineering, deep learning, and ensemble meta-modeling for building accurate and generalizable models in voice-based PD monitoring. This work provides a scalable foundation for future clinical decision support systems.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12070699","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a hybrid ensemble learning framework for the joint detection and motor severity prediction of Parkinson's disease (PD) using biomedical voice features. The proposed architecture integrates a deep multimodal fusion model with dense expert pathways, multi-head self-attention, and multitask output branches to simultaneously perform binary classification and regression. To ensure data quality and improve model generalization, preprocessing steps included outlier removal via Isolation Forest, two-stage feature scaling (RobustScaler followed by MinMaxScaler), and augmentation through polynomial and interaction terms. Borderline-SMOTE was employed to address class imbalance in the classification task. To enhance prediction performance, ensemble learning strategies were applied by stacking outputs from the fusion model with tree-based regressors (Random Forest, Gradient Boosting, and XGBoost), using diverse meta-learners including XGBoost, Ridge Regression, and a deep neural network. Among these, the Stacking Ensemble with XGBoost (SE-XGB) achieved the best results, with an R2 of 99.78% and RMSE of 0.3802 for UPDRS regression and 99.37% accuracy for PD classification. Comparative analysis with recent literature highlights the superior performance of our framework, particularly in regression settings. These findings demonstrate the effectiveness of combining advanced feature engineering, deep learning, and ensemble meta-modeling for building accurate and generalizable models in voice-based PD monitoring. This work provides a scalable foundation for future clinical decision support systems.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering