A Unified Deep Learning Ensemble Framework for Voice-Based Parkinson's Disease Detection and Motor Severity Prediction.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Madjda Khedimi, Tao Zhang, Chaima Dehmani, Xin Zhao, Yanzhang Geng
{"title":"A Unified Deep Learning Ensemble Framework for Voice-Based Parkinson's Disease Detection and Motor Severity Prediction.","authors":"Madjda Khedimi, Tao Zhang, Chaima Dehmani, Xin Zhao, Yanzhang Geng","doi":"10.3390/bioengineering12070699","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a hybrid ensemble learning framework for the joint detection and motor severity prediction of Parkinson's disease (PD) using biomedical voice features. The proposed architecture integrates a deep multimodal fusion model with dense expert pathways, multi-head self-attention, and multitask output branches to simultaneously perform binary classification and regression. To ensure data quality and improve model generalization, preprocessing steps included outlier removal via Isolation Forest, two-stage feature scaling (RobustScaler followed by MinMaxScaler), and augmentation through polynomial and interaction terms. Borderline-SMOTE was employed to address class imbalance in the classification task. To enhance prediction performance, ensemble learning strategies were applied by stacking outputs from the fusion model with tree-based regressors (Random Forest, Gradient Boosting, and XGBoost), using diverse meta-learners including XGBoost, Ridge Regression, and a deep neural network. Among these, the Stacking Ensemble with XGBoost (SE-XGB) achieved the best results, with an R<sup>2</sup> of 99.78% and RMSE of 0.3802 for UPDRS regression and 99.37% accuracy for PD classification. Comparative analysis with recent literature highlights the superior performance of our framework, particularly in regression settings. These findings demonstrate the effectiveness of combining advanced feature engineering, deep learning, and ensemble meta-modeling for building accurate and generalizable models in voice-based PD monitoring. This work provides a scalable foundation for future clinical decision support systems.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12070699","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a hybrid ensemble learning framework for the joint detection and motor severity prediction of Parkinson's disease (PD) using biomedical voice features. The proposed architecture integrates a deep multimodal fusion model with dense expert pathways, multi-head self-attention, and multitask output branches to simultaneously perform binary classification and regression. To ensure data quality and improve model generalization, preprocessing steps included outlier removal via Isolation Forest, two-stage feature scaling (RobustScaler followed by MinMaxScaler), and augmentation through polynomial and interaction terms. Borderline-SMOTE was employed to address class imbalance in the classification task. To enhance prediction performance, ensemble learning strategies were applied by stacking outputs from the fusion model with tree-based regressors (Random Forest, Gradient Boosting, and XGBoost), using diverse meta-learners including XGBoost, Ridge Regression, and a deep neural network. Among these, the Stacking Ensemble with XGBoost (SE-XGB) achieved the best results, with an R2 of 99.78% and RMSE of 0.3802 for UPDRS regression and 99.37% accuracy for PD classification. Comparative analysis with recent literature highlights the superior performance of our framework, particularly in regression settings. These findings demonstrate the effectiveness of combining advanced feature engineering, deep learning, and ensemble meta-modeling for building accurate and generalizable models in voice-based PD monitoring. This work provides a scalable foundation for future clinical decision support systems.

基于语音的帕金森病检测和运动严重程度预测的统一深度学习集成框架。
本研究提出了一种混合集成学习框架,用于使用生物医学语音特征进行帕金森病(PD)的联合检测和运动严重程度预测。该架构将深度多模态融合模型与密集专家路径、多头自关注和多任务输出分支相结合,同时进行二值分类和回归。为了确保数据质量并提高模型泛化,预处理步骤包括通过隔离森林去除异常值、两阶段特征缩放(RobustScaler随后是MinMaxScaler)以及通过多项式和交互项进行增强。采用Borderline-SMOTE来解决分类任务中的类不平衡问题。为了提高预测性能,集成学习策略通过使用多种元学习器(包括XGBoost、Ridge Regression和深度神经网络)将融合模型的输出与基于树的回归器(Random Forest、Gradient Boosting和XGBoost)叠加在一起。其中,使用XGBoost (SE-XGB)的Stacking Ensemble效果最好,UPDRS回归的R2为99.78%,RMSE为0.3802,PD分类准确率为99.37%。与近期文献的比较分析突出了我们框架的优越性能,特别是在回归设置中。这些发现证明了将先进的特征工程、深度学习和集成元建模相结合,在基于语音的PD监测中构建准确且可推广的模型的有效性。这项工作为未来的临床决策支持系统提供了可扩展的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信