Bumsik Kim, Rohit Jaikumar, Rodolfo Souza, Minjie Xu, Jeremy Johnson, Carl R Fulper, James Faircloth, Madhusudhan Venugopal, Chaoyi Gu, Tara Ramani, Michael Aldridge, Richard W Baldauf, Antonio Fernandez, Thomas Long, Richard Snow, Craig Williams, Russell Logan, Heidi Vreeland
{"title":"Emission Rates for Light-Duty Truck Towing Operations in Real-World Conditions.","authors":"Bumsik Kim, Rohit Jaikumar, Rodolfo Souza, Minjie Xu, Jeremy Johnson, Carl R Fulper, James Faircloth, Madhusudhan Venugopal, Chaoyi Gu, Tara Ramani, Michael Aldridge, Richard W Baldauf, Antonio Fernandez, Thomas Long, Richard Snow, Craig Williams, Russell Logan, Heidi Vreeland","doi":"10.3390/atmos16060749","DOIUrl":null,"url":null,"abstract":"<p><p>Light-duty trucks (LDTs) are often used to tow trailers. Towing increases the load on the engine, and this additional load can affect exhaust emissions. Although heavy-duty towing impacts are widely studied, data on LDT towing impacts is sparse. In this study, portable emissions measurement systems (PEMSs) were used to measure in-use emissions from three common LDTs during towing and non-towing operations. Emission rates were characterized by operating modes defined in the Environmental Protection Agency's (EPA's) MOVES (MOtor Vehicle Emissions Simulator) model. The measured emission rates were compared to the default rates used by MOVES, revealing similar overall trends. However, discrepancies between measured rates and MOVES predictions, especially at high speed and high operating modes, indicate a need for refinement in emissions modeling for LDTs under towing operations. Results highlight a general trend of increased CO2, CO, HC, and NOx when towing a trailer compared to non-towing operations across nearly all operating modes, with distinct CO and HC increases in the higher operating modes. Although emissions were observed to be notably higher in a handful of scenarios, results also indicate that three similar LDTs can have distinctly different emission profiles.</p>","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"16 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos16060749","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Light-duty trucks (LDTs) are often used to tow trailers. Towing increases the load on the engine, and this additional load can affect exhaust emissions. Although heavy-duty towing impacts are widely studied, data on LDT towing impacts is sparse. In this study, portable emissions measurement systems (PEMSs) were used to measure in-use emissions from three common LDTs during towing and non-towing operations. Emission rates were characterized by operating modes defined in the Environmental Protection Agency's (EPA's) MOVES (MOtor Vehicle Emissions Simulator) model. The measured emission rates were compared to the default rates used by MOVES, revealing similar overall trends. However, discrepancies between measured rates and MOVES predictions, especially at high speed and high operating modes, indicate a need for refinement in emissions modeling for LDTs under towing operations. Results highlight a general trend of increased CO2, CO, HC, and NOx when towing a trailer compared to non-towing operations across nearly all operating modes, with distinct CO and HC increases in the higher operating modes. Although emissions were observed to be notably higher in a handful of scenarios, results also indicate that three similar LDTs can have distinctly different emission profiles.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.