Ahmed Zayed, Karima Sayah, Kalicharan Sharma, Rasha Ali Radwan, Shahira M Ezzat
{"title":"β-Galactosidase inhibition explored by biochemical methods and in silico studies for plant polyphenols.","authors":"Ahmed Zayed, Karima Sayah, Kalicharan Sharma, Rasha Ali Radwan, Shahira M Ezzat","doi":"10.1016/j.abb.2025.110568","DOIUrl":null,"url":null,"abstract":"<p><p>β-Galactosidase is a lysosomal enzyme whose deficiency is associated with genetic disorders such as GM1 gangliosidosis, prompting the search for novel enzyme modulators with therapeutic potential. The current study evaluated the inhibitory potential of selected natural polyphenols against β-galactosidase using a combined approach of biochemical assays and computational modeling. Sixteen plant-derived compounds were initially screened through molecular docking against Aspergillus oryzae β-galactosidase. Among these, hesperidin, rutin, and chlorogenic acid exhibited the most favorable interactions and were subsequently assessed through in vitro enzyme inhibition assays and MM/GBSA binding energy calculations. These compounds showed potential inhibitory effects and stable binding within the enzyme's active site. Although classical pharmacological chaperone activity was not directly demonstrated, the observed modulation of enzyme function suggests potential for further development of these polyphenols as structurally distinct β-galactosidase inhibitors. The findings provide a basis for future investigations aimed at natural product-based strategies to manage lysosomal storage disorders such as GM1 gangliosidosis.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110568"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2025.110568","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
β-Galactosidase is a lysosomal enzyme whose deficiency is associated with genetic disorders such as GM1 gangliosidosis, prompting the search for novel enzyme modulators with therapeutic potential. The current study evaluated the inhibitory potential of selected natural polyphenols against β-galactosidase using a combined approach of biochemical assays and computational modeling. Sixteen plant-derived compounds were initially screened through molecular docking against Aspergillus oryzae β-galactosidase. Among these, hesperidin, rutin, and chlorogenic acid exhibited the most favorable interactions and were subsequently assessed through in vitro enzyme inhibition assays and MM/GBSA binding energy calculations. These compounds showed potential inhibitory effects and stable binding within the enzyme's active site. Although classical pharmacological chaperone activity was not directly demonstrated, the observed modulation of enzyme function suggests potential for further development of these polyphenols as structurally distinct β-galactosidase inhibitors. The findings provide a basis for future investigations aimed at natural product-based strategies to manage lysosomal storage disorders such as GM1 gangliosidosis.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.