Calculation of Sensitivity and Specificity from Partial Data for Meta-Analyses: Introducing Some Practical Methods.

IF 2 Q1 EMERGENCY MEDICINE
Archives of Academic Emergency Medicine Pub Date : 2025-07-11 eCollection Date: 2025-01-01 DOI:10.22037/aaemj.v13i1.2678
Reihanesadat Khatami, Mohammadsadegh Faghihi, Hannanesadat Khatami, Mahmoud Yousefifard, Seyedhesamoddin Khatami
{"title":"Calculation of Sensitivity and Specificity from Partial Data for Meta-Analyses: Introducing Some Practical Methods.","authors":"Reihanesadat Khatami, Mohammadsadegh Faghihi, Hannanesadat Khatami, Mahmoud Yousefifard, Seyedhesamoddin Khatami","doi":"10.22037/aaemj.v13i1.2678","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Meta-analyses of diagnostic/prognostic studies for calculating the pooled sensitivity and specificity require true positive (TP), true negative (TN), false positive (FP), and false negative (FN) counts. However, few studies report these values directly. This study aimed to consolidate practical methods to reconstruct sensitivity and specificity from minimal data.</p><p><strong>Methods: </strong>Our framework addresses three main situations: (1) algebraic rearrangements to compute specificity given partial metrics; (2) digitization of receiver operating characteristic (ROC) curves to obtain threshold-specific sensitivity and specificity; and (3) application of the binormal model when only AUC and prevalence are available. We tested these methods on a dataset related to mortality prediction in myocardial infarction (MI) using machine learning models, assessing how well they reconstructed sensitivity and specificity.</p><p><strong>Results: </strong>Algebraic formulas and ROC digitization yielded reliable estimates when partial metrics or graphical curves were sufficiently detailed. However, the binormal model, which assumes equal variances, showed noticeable inaccuracies, especially for sensitivity. Linear regression analyses indicated that higher prevalence and higher AUC reduced estimation errors.</p><p><strong>Conclusion: </strong>These methods offer practical alternatives for reconstructing diagnostic accuracy measures when data are incomplete. Relying solely on AUC-based estimations may introduce substantial bias, particularly in low-prevalence contexts. We recommend that primary studies report threshold-specific sensitivity and specificity to support more accurate meta-analytic estimations.</p>","PeriodicalId":8146,"journal":{"name":"Archives of Academic Emergency Medicine","volume":"13 1","pages":"e56"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Academic Emergency Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/aaemj.v13i1.2678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Meta-analyses of diagnostic/prognostic studies for calculating the pooled sensitivity and specificity require true positive (TP), true negative (TN), false positive (FP), and false negative (FN) counts. However, few studies report these values directly. This study aimed to consolidate practical methods to reconstruct sensitivity and specificity from minimal data.

Methods: Our framework addresses three main situations: (1) algebraic rearrangements to compute specificity given partial metrics; (2) digitization of receiver operating characteristic (ROC) curves to obtain threshold-specific sensitivity and specificity; and (3) application of the binormal model when only AUC and prevalence are available. We tested these methods on a dataset related to mortality prediction in myocardial infarction (MI) using machine learning models, assessing how well they reconstructed sensitivity and specificity.

Results: Algebraic formulas and ROC digitization yielded reliable estimates when partial metrics or graphical curves were sufficiently detailed. However, the binormal model, which assumes equal variances, showed noticeable inaccuracies, especially for sensitivity. Linear regression analyses indicated that higher prevalence and higher AUC reduced estimation errors.

Conclusion: These methods offer practical alternatives for reconstructing diagnostic accuracy measures when data are incomplete. Relying solely on AUC-based estimations may introduce substantial bias, particularly in low-prevalence contexts. We recommend that primary studies report threshold-specific sensitivity and specificity to support more accurate meta-analytic estimations.

从部分数据计算meta分析的敏感性和特异性:介绍一些实用的方法。
简介:用于计算汇总敏感性和特异性的诊断/预后研究的荟萃分析需要真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)计数。然而,很少有研究直接报告这些值。本研究旨在巩固从最小数据中重建敏感性和特异性的实用方法。方法:我们的框架解决了三种主要情况:(1)代数重排来计算给定部分度量的特异性;(2)对受试者工作特征(ROC)曲线进行数字化处理,获得阈值特异性敏感性和特异性;(3)当只有AUC和患病率时,二正态模型的应用。我们使用机器学习模型在与心肌梗死(MI)死亡率预测相关的数据集上测试了这些方法,评估了它们重建敏感性和特异性的程度。结果:当部分指标或图形曲线足够详细时,代数公式和ROC数字化产生了可靠的估计。然而,假设方差相等的二正态模型显示出明显的不准确性,特别是在灵敏度方面。线性回归分析表明,较高的患病率和较高的AUC降低了估计误差。结论:当数据不完整时,这些方法为重建诊断准确性措施提供了实用的选择。仅依靠基于auc的估计可能会引入大量偏差,特别是在低流行率的情况下。我们建议初步研究报告阈值特异性敏感性和特异性,以支持更准确的元分析估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Academic Emergency Medicine
Archives of Academic Emergency Medicine Medicine-Emergency Medicine
CiteScore
8.90
自引率
7.40%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信