Aini Ismafairus Abd Hamid, Nurfaten Hamzah, Siti Mariam Roslan, Nur Alia Amalin Suhardi, Muhammad Riddha Abdul Rahman, Faiz Mustafar, Hazim Omar, Asma Hayati Ahmad, Elza Azri Othman, Ahmad Nazlim Yusoff
{"title":"Distinct neural mechanisms of alpha binaural beats and white noise for cognitive enhancement in young adults.","authors":"Aini Ismafairus Abd Hamid, Nurfaten Hamzah, Siti Mariam Roslan, Nur Alia Amalin Suhardi, Muhammad Riddha Abdul Rahman, Faiz Mustafar, Hazim Omar, Asma Hayati Ahmad, Elza Azri Othman, Ahmad Nazlim Yusoff","doi":"10.3934/Neuroscience.2025010","DOIUrl":null,"url":null,"abstract":"<p><p>Young adulthood is a critical period marked by significant cognitive demands, requiring efficient brain function to manage academic, professional, and social challenges. Many young adults struggle with focus, stress management, and information processing. Emerging research suggests that auditory stimulation, specifically binaural beats and white noise, may enhance cognitive abilities and address these challenges. This exploratory study investigates the immediate effects of alpha binaural beats (ABB) and alpha binaural beats combined with white noise (AWN) on brain connectivity in young adults using functional magnetic resonance imaging (fMRI). Twenty-nine participants (n = 14 ABB, n = 15 AWN; mean age ≈ 22.14 years) were randomly assigned to receive either ABB or AWN during fMRI scans. Using dynamic independent component analysis (dyn-ICA), we examined the modulation of functional brain circuits during auditory stimulation. Preliminary findings revealed distinct and overlapping patterns of brain connectivity modulation of ABB and AWN. ABB primarily modulated connectivity within circuits involving frontoparietal, visual-motor, and multisensory regions, potentially enhancing cognitive flexibility, attentional control, and multisensory processing. Conversely, AWN primarily modulated connectivity in salience and default mode networks, with notable effects in limbic or reward regions, suggesting enhancements in focused attention and emotional processing. These preliminary results demonstrate that ABB and AWN differentially modulate brain networks on an immediate timescale. ABB may promote cognitive adaptability, while AWN enhances focused attention and emotional stability. Although behavioral effects were not assessed, these findings provide a neurobiological basis for understanding how these stimuli impact brain circuits. These preliminary findings may aid the development of personalized strategies for cognitive and emotional well-being. Given the exploratory nature, small sample size, and lack of concurrent behavioral data, these findings should be interpreted cautiously. Future research with rigorous designs, including control groups and behavioral measures, is needed to explore the long-term effects and applications of these interventions in various settings.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"12 2","pages":"147-179"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2025010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Young adulthood is a critical period marked by significant cognitive demands, requiring efficient brain function to manage academic, professional, and social challenges. Many young adults struggle with focus, stress management, and information processing. Emerging research suggests that auditory stimulation, specifically binaural beats and white noise, may enhance cognitive abilities and address these challenges. This exploratory study investigates the immediate effects of alpha binaural beats (ABB) and alpha binaural beats combined with white noise (AWN) on brain connectivity in young adults using functional magnetic resonance imaging (fMRI). Twenty-nine participants (n = 14 ABB, n = 15 AWN; mean age ≈ 22.14 years) were randomly assigned to receive either ABB or AWN during fMRI scans. Using dynamic independent component analysis (dyn-ICA), we examined the modulation of functional brain circuits during auditory stimulation. Preliminary findings revealed distinct and overlapping patterns of brain connectivity modulation of ABB and AWN. ABB primarily modulated connectivity within circuits involving frontoparietal, visual-motor, and multisensory regions, potentially enhancing cognitive flexibility, attentional control, and multisensory processing. Conversely, AWN primarily modulated connectivity in salience and default mode networks, with notable effects in limbic or reward regions, suggesting enhancements in focused attention and emotional processing. These preliminary results demonstrate that ABB and AWN differentially modulate brain networks on an immediate timescale. ABB may promote cognitive adaptability, while AWN enhances focused attention and emotional stability. Although behavioral effects were not assessed, these findings provide a neurobiological basis for understanding how these stimuli impact brain circuits. These preliminary findings may aid the development of personalized strategies for cognitive and emotional well-being. Given the exploratory nature, small sample size, and lack of concurrent behavioral data, these findings should be interpreted cautiously. Future research with rigorous designs, including control groups and behavioral measures, is needed to explore the long-term effects and applications of these interventions in various settings.
期刊介绍:
AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.