Generating Function for Quantum Depletion of Bose-Einstein Condensates

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Simone Rademacher
{"title":"Generating Function for Quantum Depletion of Bose-Einstein Condensates","authors":"Simone Rademacher","doi":"10.1007/s10955-025-03495-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a Bose gas on the unit torus at zero temperature in the Gross-Pitaevskii regime, known to perform Bose-Einstein condensation: a macroscopic fraction of the bosons occupy the same quantum state, called condensate. We study the Bose gas’ quantum depletion, that is the number of bosons outside the condensate, and derive an explicit asymptotic formula of its generating function. Moreover, we prove an upper bound for the tails of the quantum depletion.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03495-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Bose gas on the unit torus at zero temperature in the Gross-Pitaevskii regime, known to perform Bose-Einstein condensation: a macroscopic fraction of the bosons occupy the same quantum state, called condensate. We study the Bose gas’ quantum depletion, that is the number of bosons outside the condensate, and derive an explicit asymptotic formula of its generating function. Moreover, we prove an upper bound for the tails of the quantum depletion.

玻色-爱因斯坦凝聚体量子耗竭的生成函数。
我们考虑在Gross-Pitaevskii状态下单位环面上的零温度玻色气体,已知进行玻色-爱因斯坦凝聚:玻色子的宏观部分占据相同的量子态,称为凝聚。我们研究了玻色气体的量子耗尽,即凝聚体外玻色子的数量,并推导出其生成函数的显式渐近公式。此外,我们还证明了量子耗尽尾部的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信