Facile Fabrication of Robust Hydroelastomers via Synergistic Osmotic Pressure and Metal-Coordination Bonding

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Wenjun Chen, Sheng Yang, Sanyu Qian, Shijun Long, Xinghou Gong, Xuefeng Li, Yiwan Huang
{"title":"Facile Fabrication of Robust Hydroelastomers via Synergistic Osmotic Pressure and Metal-Coordination Bonding","authors":"Wenjun Chen,&nbsp;Sheng Yang,&nbsp;Sanyu Qian,&nbsp;Shijun Long,&nbsp;Xinghou Gong,&nbsp;Xuefeng Li,&nbsp;Yiwan Huang","doi":"10.1002/marc.202500359","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Elastomers are vital for applications demanding flexibility and resilience, yet an inherent trade-off between strength and toughness generally exists in conventional systems. Here, we present a facile strategy to fabricate robust poly(acrylic acid) (PAA)-based hydroelastomers by synergizing osmotic pressure and dynamic metal-coordination bonding. In the design, a slightly crosslinked PAA hydrogel is immersed in a concentrated FeCl<sub>3</sub> solution, where external osmotic pressure rapidly dehydrates the network, achieving ultrahigh polymer chain density. Concurrently, Fe<sup>3+</sup> ions penetrate the matrix, forming dynamic –COO<sup>−</sup>•••Fe<sup>3+</sup> coordination bonds that enhance energy dissipation and cohesion. Systematic studies are carried out to understand the effects of metal-ion concentration and monomer concentration on the mechanical properties of the hydroelastomers. The resulting hydroelastomers retain ≈10 wt.% water, enabling flexibility while exhibiting unprecedented mechanical properties: Young's modulus &gt;100 MPa, tensile strength &gt;9 MPa, work of extension &gt;38 MJ m<sup>−3</sup>, fracture energy &gt;35000 J m<sup>−2</sup>, and elongation at break &gt;400%, alongside optical transparency. These properties surpass those of many commercial elastomers (e.g., PDMS, natural rubber). Furthermore, the hydroelastomers demonstrate reversible softening upon rehydration, facilitating stimuli-responsive applications. This work offers a simple yet effective strategy for designing and fabricating robust elastomers that harmonize strength, toughness, and elasticity.</p>\n </div>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 19","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202500359","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Elastomers are vital for applications demanding flexibility and resilience, yet an inherent trade-off between strength and toughness generally exists in conventional systems. Here, we present a facile strategy to fabricate robust poly(acrylic acid) (PAA)-based hydroelastomers by synergizing osmotic pressure and dynamic metal-coordination bonding. In the design, a slightly crosslinked PAA hydrogel is immersed in a concentrated FeCl3 solution, where external osmotic pressure rapidly dehydrates the network, achieving ultrahigh polymer chain density. Concurrently, Fe3+ ions penetrate the matrix, forming dynamic –COO•••Fe3+ coordination bonds that enhance energy dissipation and cohesion. Systematic studies are carried out to understand the effects of metal-ion concentration and monomer concentration on the mechanical properties of the hydroelastomers. The resulting hydroelastomers retain ≈10 wt.% water, enabling flexibility while exhibiting unprecedented mechanical properties: Young's modulus >100 MPa, tensile strength >9 MPa, work of extension >38 MJ m−3, fracture energy >35000 J m−2, and elongation at break >400%, alongside optical transparency. These properties surpass those of many commercial elastomers (e.g., PDMS, natural rubber). Furthermore, the hydroelastomers demonstrate reversible softening upon rehydration, facilitating stimuli-responsive applications. This work offers a simple yet effective strategy for designing and fabricating robust elastomers that harmonize strength, toughness, and elasticity.

Abstract Image

利用协同渗透压和金属配位键制备坚固的氢弹性体。
弹性体对于要求灵活性和弹性的应用至关重要,但在传统系统中通常存在强度和韧性之间的内在权衡。在这里,我们提出了一种简单的策略,通过渗透压和动态金属配位键的协同作用来制造坚固的聚丙烯酸(PAA)基氢弹性体。在设计中,将轻度交联的PAA水凝胶浸入浓缩的FeCl3溶液中,外部渗透压会迅速使网络脱水,从而实现超高的聚合物链密度。同时,Fe3+离子穿透基体,形成动态的- coo -•••Fe3+配位键,增强了能量耗散和内聚力。系统地研究了金属离子浓度和单体浓度对氢弹性体力学性能的影响。所得的氢弹性体保留了≈10 wt.%的水分,在保持柔韧性的同时,还表现出前所未有的机械性能:杨氏模量>00 MPa,抗拉强度>9 MPa,延伸功>38 MJ m-3,断裂能>35000 J m-2,断裂伸长率>400%,以及光学透明度。这些性能超过了许多商用弹性体(例如,PDMS,天然橡胶)。此外,氢弹性体在再水化时表现出可逆的软化,有利于刺激响应应用。这项工作为设计和制造协调强度、韧性和弹性的坚固弹性体提供了一种简单而有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信