{"title":"Ligilactobacillus Murinus and Lactobacillus Johnsonii Suppress Macrophage Pyroptosis in Atherosclerosis through Butyrate-GPR109A-GSDMD Axis.","authors":"Rui Hua, Ning Ding, Yiming Hua, Xiaoke Wang, Yu Xu, Xiangrui Qiao, Xue Shi, Ting Bai, Ying Xiong, Xiaozhen Zhuo, Chong Fan, Juan Zhou, Yue Wu, Junhui Liu, Zuyi Yuan, Ting Li","doi":"10.1002/advs.202501707","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota and their metabolites are remarkable regulators in atherosclerosis. Oral drugs such as aspirin have recently been found to modulate the gut microbiome. However, the roles of drug-microbiota-metabolite interactions in atherosclerosis have not been explored. Herein, two gut probiotics, Ligilactobacillus murinus (L. murinus) and Lactobacillus johnsonii (L. johnsonii), are identified from mouse models and human cohorts, which are positively correlated with aspirin usage. Specifically, the eradication of these two species eliminated aspirin's anti-atherosclerotic effects, while their transplantation exhibited therapeutic effects against atherosclerosis. Integrative analysis of metagenomic and metabolomic data showed that elevated levels of butyrate are associated with these two species. Mechanically, L. murinus and L. johnsonii form symbiotic networks with butyrate-producing bacteria such as Allobaculum. This study confirmed that gut microbes produce butyrate, which helps preserve the gut barrier and prevents the leakage of lipopolysaccharides. By integrating molecular biology and single-cell sequencing data, G protein-coupled receptor 109A (GPR109A) is confirmed as the direct target of butyrate. Through the activation of GPR109A, butyrate produced by L. murinus and L. johnsonii suppressed the expression of Gasdermin D (GSDMD) in the pyroptosis of macrophages during atherosclerosis. These findings offer novel insights into the drug-microbiota axis that can be targeted to improve the treatment of atherosclerosis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e01707"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202501707","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiota and their metabolites are remarkable regulators in atherosclerosis. Oral drugs such as aspirin have recently been found to modulate the gut microbiome. However, the roles of drug-microbiota-metabolite interactions in atherosclerosis have not been explored. Herein, two gut probiotics, Ligilactobacillus murinus (L. murinus) and Lactobacillus johnsonii (L. johnsonii), are identified from mouse models and human cohorts, which are positively correlated with aspirin usage. Specifically, the eradication of these two species eliminated aspirin's anti-atherosclerotic effects, while their transplantation exhibited therapeutic effects against atherosclerosis. Integrative analysis of metagenomic and metabolomic data showed that elevated levels of butyrate are associated with these two species. Mechanically, L. murinus and L. johnsonii form symbiotic networks with butyrate-producing bacteria such as Allobaculum. This study confirmed that gut microbes produce butyrate, which helps preserve the gut barrier and prevents the leakage of lipopolysaccharides. By integrating molecular biology and single-cell sequencing data, G protein-coupled receptor 109A (GPR109A) is confirmed as the direct target of butyrate. Through the activation of GPR109A, butyrate produced by L. murinus and L. johnsonii suppressed the expression of Gasdermin D (GSDMD) in the pyroptosis of macrophages during atherosclerosis. These findings offer novel insights into the drug-microbiota axis that can be targeted to improve the treatment of atherosclerosis.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.