Qian Yu, Tao Chen, Yanping Zhang, Yu Zhao and Anchen Guo
{"title":"Laminin-functionalized 3D-printed PEGDA-acrylic acid scaffolds with enhanced neuronal adhesion and electrical activity","authors":"Qian Yu, Tao Chen, Yanping Zhang, Yu Zhao and Anchen Guo","doi":"10.1039/D5BM00663E","DOIUrl":null,"url":null,"abstract":"<p >The development of neural tissue engineering demands biocompatible scaffolds capable of supporting neuronal adhesion and network formation. Polyethylene glycol diacrylate (PEGDA) hydrogel has emerged as an ideal candidate due to its excellent biocompatibility, tunable mechanical properties, and stability. However, its inherent resistance to protein adsorption limits cell adhesion. To overcome this challenge, this study combines 3D printing and functional surface modification to create a PEGDA-acrylic acid (AA)-laminin scaffold for promoting neuronal adhesion. High-precision 3D PEGDA-AA scaffolds were fabricated by light-curing 3D printing technology, followed by modification with laminin. The effects of varying AA and PEGDA ratios on the morphology, mechanical properties, and cytocompatibility of the 3D-printed scaffolds were evaluated. The scaffold, composed of 40% (w/v) PEGDA and 20% (w/v) acrylic acid, with subsequent 50 μg mL<small><sup>−1</sup></small> laminin surface modification, demonstrated excellent biocompatibility and enhanced neuronal adhesion (40%) compared to the unmodified PEGDA scaffold (3%). Additionally, neurons within the scaffold exhibited directional migration. Microelectrode array analysis of neuronal electrophysiological activity confirmed that this 3D scaffold supported primary cortical neurons in forming functional synaptic networks, with enhanced synchronization of neuronal electrical activity. This PEGDA-AA-laminin 3D scaffold represents an ideal cell culture platform for brain-like construction and nerve repair in neural tissue engineering.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 18","pages":" 5052-5070"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00663e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of neural tissue engineering demands biocompatible scaffolds capable of supporting neuronal adhesion and network formation. Polyethylene glycol diacrylate (PEGDA) hydrogel has emerged as an ideal candidate due to its excellent biocompatibility, tunable mechanical properties, and stability. However, its inherent resistance to protein adsorption limits cell adhesion. To overcome this challenge, this study combines 3D printing and functional surface modification to create a PEGDA-acrylic acid (AA)-laminin scaffold for promoting neuronal adhesion. High-precision 3D PEGDA-AA scaffolds were fabricated by light-curing 3D printing technology, followed by modification with laminin. The effects of varying AA and PEGDA ratios on the morphology, mechanical properties, and cytocompatibility of the 3D-printed scaffolds were evaluated. The scaffold, composed of 40% (w/v) PEGDA and 20% (w/v) acrylic acid, with subsequent 50 μg mL−1 laminin surface modification, demonstrated excellent biocompatibility and enhanced neuronal adhesion (40%) compared to the unmodified PEGDA scaffold (3%). Additionally, neurons within the scaffold exhibited directional migration. Microelectrode array analysis of neuronal electrophysiological activity confirmed that this 3D scaffold supported primary cortical neurons in forming functional synaptic networks, with enhanced synchronization of neuronal electrical activity. This PEGDA-AA-laminin 3D scaffold represents an ideal cell culture platform for brain-like construction and nerve repair in neural tissue engineering.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.